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Convolutional Neural Networks Demystified: A
Matched Filtering Perspective Based Tutorial
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Abstract—Deep Neural Networks (DNN) and especially Convo-
lutional Neural Networks (CNN) have revolutionized the way we
approach the analysis of large quantities of data. However, the
largely ad-hoc fashion of their development, albeit one reason
for their rapid success, has also brought to light the intrinsic
limitations of CNNs - in particular those related to their black
box nature. In addition, the ability to ’explain’ both the way such
systems behave and the results they produce is increasingly be-
coming an imperative in many practical applications. Therefore,
it would be particularly useful to establish physically meaningful
mechanisms underpinning the operation of CNNs, thus helping
to resolve the issue of interpretability of the processing steps and
explain their input-output relationship. To this end, we revisit the
operation of CNNs from first principles and show that their very
backbone – the convolution operation – represents a matched
filter which examines the input for the presence of characteristic
patterns in data. Our treatment is based on temporal signals,
naturally generated by physical sensors, which admit rigorous
analysis through systems science. This serves as a vehicle for a
unifying account on the overall functionality of CNNs, whereby
both the convolution-activation-pooling chain and learning strate-
gies are shown to admit a compact and elegant interpretation
under the umbrella of matched filtering. In addition to helping
reveal the physical principles underpinning CNNs and providing
an intuitive understanding of their operation, the treatment of
CNNs from a matched filtering perspective is also shown to offer
a platform to support further developments in this area.

I. INTRODUCTION

Our world is becoming rapidly dependent on data of increas-
ing complexity, diversity and volume; these are generated by
readily available sensors, such as signal and image streams
from microphones and cameras in multimedia communication
and social networks, and increasingly from internet-enabled
autonomous electronic devices, e.g. the Internet of Things (IoT).
The usefulness of these data streams to us humans is limited
by the inevitable bottleneck in both the processing and storage
of such exceedingly high data volumes known as the Curse of
Dimensionality (CoD) [1], [2], [3].

Learning machines based on Convolutional Neural Networks
(CNN) seek to mitigate the issues related to Curse of Dimen-
sionality through the exploitation of local information in data.
Consideration of local information is physically justified, as
real-world data typically exhibit some sort of smoothness, that
is, a degree of similarity among the neighboring samples in
signals or pixels in images. Such local information is naturally
accounted for in the form of localized patterns in data, known as
features; in this way the learning task boils down to performing
a search for specific characteristic features in data. Another
advantage of operating in the feature domain is that this resolves
the inadequacy of standard approaches related to a change of
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the position of patterns in data, for example, due to translation.
Indeed, if a certain feature in e.g. an input image changes its
position, then a standard “brute force” NN approach will treat
such a pattern as a completely different set of pixels, while

“feature based” learners can be designed to account for certain
invariances of the feature space, such as translations, and will
look for the specific shapes/patterns of interest anywhere in
the analysed data. Much like with standard (fully connected)
DNNs, this approach comes at the expense of the inability
to understand the underlying mechanism involved, giving rise
to an aura of mysticism around big data analysis, as well as
making the data processing unnecessarily black box in nature
and cumbersome to develop [4], [5], [6].

In the particular case of Convolutional Neural Networks
[7], [8], [9], the characteristic patterns (features) of interest
are encoded in the so called convolution filters or convolution
kernels through the training process of CNNs. An example
of a simple CNN which consists of a convolutional layer,
activation and max-pooling stages, and the fully connected (FC)
output layer [10], [11], [12] is shown in Fig. 1. More precisely,
the presence of such characteristic patterns is determined by
comparing the convolution filters to local patterns in the data,
whereby the mechanism for feature/pattern identification is
invariant to the change in the position/orientation of features
[13], [14], [15], while the feature matching process is performed
over the whole signal or image [16], [17], [18], [19]. For more
details on a corresponding approach to graph convolutional
neural networks, please see our sister paper [20].

To bring the treatment of CNNs closer to the communities
working on systems science and at the same time help resolve
the interpretability issues arising from their black box nature,
we revisit the operation of CNNs by taking inspiration from
the theory of matched filters. The convolution of a considered
signal with the feature of interest is then used as a mechanism
to confirm both the existence and location of a characteristic
feature within the analysed data. We further show that such an
approach allows for a unifying perspective of CNNs, whereby
all steps in their operation, such as the convolution–activation–
pooling chain in the forward pass and the back-propagation
based learning strategy, can be considered and fully explained
through the lenses of matched filtering. Such a perspective is
shown to be physically meaningful, and serves as a basis for
a step-by-step visualisation of every stage in CNN operation,
based on a matched filtering interpretation of the identification
and classification of characteristic patterns in real-world noisy
data. It is our hope that the presented approach will help
demystify the operation of CNNs, while at the same time
helping enhance their interpretability through solid theoretical
justification behind the key steps of their operation – thus
serving as a basis for their further development.
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Fig. 1. A simple CNN which consists of an input layer, a convolutional layer with four convolution filters, the nonlinear activation (ReLU) stage, the
max-pooling stage, the flattening stage, and the fully connected output layer.

II. PRINCIPLE OF MATCHED FILTERING

Matched filtering is a widely used technique for the detection
of a known feature (template), w(n), in an observed noisy
signal, x(n), and has found application in areas including radar,
sonar, digital communications, and biomedical engineering [21],
to mention but a few. A matched filter makes decision based
on the cross-correlation between the observed signal, x(n),
and the template of interest, w(n), that is based on

y(n) = ∑
m

w(m)x(n + m), (1)

whereby the output of a matched filter, that is, the cross-
correlation, y(n), reaches its maximum when a pattern present
in the received data stream, x(n), is aligned with the pre–
defined feature (pattern) of interest, w(n).

The implementation of the cross-correlation in (1) can be
awkward for real-time streaming data and/or large-size features.
On the other hand, such a scenario perfectly suits standard
digital filters, where the input-output relation represents a
convolution between the input, x(n), and the impulse response,
h(n), denoted by y(n) = x(n) ∗ h(n) and given by

y(n) = ∑
m

h(m)x(n−m) = ∑
m

x(m)h(n−m)

= x(n) ∗ h(n) = h(n) ∗ x(n). (2)

A comparison between the cross-correlation in (1) and the
convolution in (2) immediately suggests a way to implement
cross-correlation through convolution. This is achieved by time-
reversing the template of interest, w(m)→ w(−m) in (1),
which then serves as the “impulse response” in the convolution
sum in (2), that is, h(n) = w(−n). Therefore, the convolution-
based implementation of the matched filter in (1) has the form

y(n) = x(n) ∗ w(−n) = ∑
m

w(−m)x(n−m)

−m→m
== ∑

m
w(m)x(n + m) = x(n) ∗c w(n). (3)

where the symbol ∗c designates the convolution with a time-
reversed feature/template vector, w(−n). Figure 2 illustrates
the principle of matched filtering in a noise–free scenario, and
its implementation through convolution and thresholding.

Remark 1: The translation-invariance property of the convolu-
tion operator dictates that, as desired, convolution-based feature
detection is independent of the feature position within the
considered signal, x(n). This is because y(n) = x(n) ∗w(−n)
is calculated by sliding the window (filter/kernel/pattern),
w(−n), of length M along the signal, x(n), and taking a

dot-product with the corresponding portion of x(n), at each
n. By its very nature, the dot product represents a similarity
measure (cosine similarity) which further justifies the use of
the convolution operator when searching for patterns in data.

Fig. 2. Operation of a matched filter, which confirms the presence and
position of a known triangular template (thin blue line), w(n), in the observed
signal, x(n) (thick black line). The matched filter performs cross-correlation
between a known template of interest, w(n), and the unknown input, x(n).
This cross-correlation is implemented through a convolution between x(n)
and a time-reversed template, w(−n), which serves as the impulse response.

Remark 2: We have seen that when using a digital filter to
implement the matched filtering operation, the convolution
x(n) ∗ w(−n) corresponds to the cross-correlation between
the observed signal, x(n), and the feature of interest, w(n),
rather than representing their actual convolution, x(n) ∗ w(n).
Therefore, the convolutional layer in CNNs (see Fig. 1)
performs precisely the matched filtering operation, described
in (3) and Figures 2 and 3. Yet, despite this principle (of
pattern matching) underpinning the operation of CNNs, these
intrinsically cross-correlational neural networks are referred
to as convolutional neural networks. Indeed, all notations in
the literature, such as x ∗ rot1800(w) or conv{x,reverse(w)},
assume that the convolution is only applied after the feature
vector is time reversed, that is, x(n) ∗ w(−n). We will use a
simplified notation x ∗c w, to indicate that the second signal in
the convolution is reversed. Another aspect which reinforces
our matched filtering perspective of CNNs is that standard
convolution often represents a signal conditioning operation
(e.g. low-pass filtering) whereby every sample of the output is
important; on the contrary, the only output sample of interest
from a matched filter is the maximum out of the N + M− 1
output samples. This will be used in Remark 4 to interpret the
max–pooling operation within CNNs.
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III. FINDING MULTIPLE PATTERNS IN DATA BY CNNS

Consider a signal which contains one waveform which
belongs to a set of all possible pre-defined templates/features of
interests; such as set is also called a dictionary or an alphabet.
Fig. 2 shows that the maximum cross-correlation between the
received signal and templates from the dictionary will indicate
the presence of one of the templates from the dictionary in the
signal, together with its location in time. Based on (3), this
cross-correlation can be calculated by passing the received
waveform through a bank of matched filters, the impulse
responses of which are time-reversed versions of the dictionary
templates, as elaborated in Example 1 and Fig. 3.

Example 1. Consider two noisy signals, x1(n) and x2(n), shown as
black lines in the top two panels in Fig. 3, which contain different
features of interest, shown in green. According to Remark 1,
the impulse responses of the convolutions, which implement the
corresponding matched filters, are the time-reversed versions
of the original features (in green) from the top panel, and are
designated by the corresponding red and blue lines in the middle
panel of Fig. 3. Both noisy input signals are next convolved
with these time reversed features according to y(n) = x(n) ∗
w(−n) = x(n) ∗c w(n), as in (3). The outputs of the so realised
matched filters (red and blue filter) are shown in the bottom
panels in Fig. 3. The left two panels at the bottom show the
outputs of the red and blue matched filter, y(n), when detecting
the presence of the first feature, w1(n), in the noisy input signal
x1(n), while the two right panels at the bottom show the outputs
of the red and blue matched filter, y(n), when identifying the
presence of the second feature, w2(n), in the noisy input signal
x2(n). The maxima at the corresponding matched filters indicate
that the first input signal indeed contains the red feature (since
the output is above the threshold line), while the second input
signal contains the blue feature.

Recall that the impulse response, h(n) = w(−n), in the
context of convolution is often referred to as a filter; this
is the rationale behind the use of the term convolution filter
when referring to the feature of interest, w(n), within CNNs.
Building upon Example 1 and Remark 2, the presence of
K distinct features (templates), wk(n),k = 1,2, . . . ,K, in the
input signal, x(n), may be identified by employing a bank of
K matched filters, the outputs of which are given by

yk(n) = x(n) ∗ wk(−n) = x(n) ∗c wk(n). (4)

The decision on the presence and position of a feature,
w(n), in the input signal is then based on the maximum
response, ymax = maxk,n{y1(n), . . . ,yK(n)}, from this bank
of K matched filters. From the definition of matched filter, it
then follows that if the input signal, x(n), contains a version
of the feature wk0(n) which is shifted by no samples, that is,
wk0(n− n0), then the maximum of the output of the matched
filter, ymax = Ewk0

= ∑n w2
k0
(n) > 0, will be at time instant

n = n0, where Ewk0
denotes the energy of the feature wk0(n).

In other words, the bank of convolution filters aims to find

k0=arg{max
n
{x(n) ∗c w1(n)}, . . . ,max

n
{x(n) ∗c wK(n)}} (5)

Remark 3: (ReLU) The decision on whether a feature wk(n)
is present in the input x(n) is based on the maximum value

Fig. 3. Illustration of the operation of a matched filter in the presence of noise.
Top panels: Two noisy input signals, x1(n) and x2(n), of length N = 8 (with
the corresponding noise denoted by ε1(n) and ε2(n)) are shown in solid black
line, while the corresponding original noise-free features of interest in the
input, denoted by w1(n) and w2(n), are of length N = 3 and are shown in
green line. Middle panels: The impulse responses, w1(−n) and w2(−n), of
the convolutions which implement the corresponding matched filters as in (3),
are shown in red and blue. Bottom panels: The maxima of the outputs of the
red and blue matched filter to the input signals are used to decide the presence
of a feature of interest in the input signal, with an appropriate threshold in
dashed line. Observe that the feature w1(n) was correctly detected in the input
x1(n) while the feature w2(n) was correctly detected in the input x2(n).

of the output of the bank of convolution filters in (4). Such a
maximum is equivalent to either the energy of a feature in hand
(noise-free case) or the signal to noise ratio (for noisy data) –
both positive quantities – so that its location is not affected by a
scaling of all kernels, wk(n), by the same positive factor (even
at each iteration). The decision in (4) will remain unaltered if
the negative values of every output, yk(n), k = 1, . . . , K in (4),
are not considered, that is, upon a preprocessing of the form

ok(n) = ReLU{yk(n)} = ReLU{x(n) ∗c wk(n)} (6)

where ReLU stands for Rectified Linear Unit, a common
nonlinear activation function in CNNs, which is defined by

ReLU(y) = max{0,y}. (7)

Remark 4: (Max–pooling) Remark 2 shows that when iden-
tifying a characteristic feature in the input through matched
filtering, as in (5), we are only interested in the value and
position of the maximum output sample among all K matched
filters. For example, if there was just one feature present in
the input signal, that is K = 1, then it would be sufficient to
retain just one (maximum) sample of the matched filter output
for further processing (cf. a following layer of a CNN), rather
presenting all the outputs of the corresponding convolution
sum in (3). The same reasoning applies when searching for
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K > 1 patterns in data, whereby albeit several “local” samples
centered around the maximum of a matched filter do correspond
to that same feature, they carry no useful information and can
thus be omitted in further processing steps. In the same spirit,
our search for features in data will not be compromised if the
set of outputs of a matched filter is split into P non-overlapping
segments; the next processing step (e.g. the fully connected
layer of a CNN in Fig. 1) will consider only such subset-wise
maxima when searching for features in data, thus yielding a P-
fold reduction in dimensionality. This is precisely the principle
behind the so called max-pooling operation in CNNs which
underpins their computational efficiency over standard NNs.

Remarks 2–4 have shown that the whole convolution–
activation–pooling chain within CNNs admits a unified physical
interpretation from a matched filtering perspective, with each
convolution filter tuned to a different distinct feature in the
input signal. This equips CNNs with the ability to learn, in an
adaptive way, different forms of feature spaces, making them
suitable for robust and efficient analysis of signals and images.

IV. THE FORWARD PROPAGATION PATHWAY IN CNNS

We shall now employ the matched filter perspective, in-
troduced above, in order to enable physically meaningful
interpretation of the key algorithmic steps in the forward
propagation path of CNNs. For simplicity, the weights of the
convolution filters are assumed to have been already initialised
or calculated. The matched filtering perspective of the weight
update through back-propagation is addressed in Section III in
the Supplement.

For clarity, and without loss of generality, we consider a
generic CNN shown in Fig. 1 and Fig. 1 in the Supplement,
where the goal is to classify input signals into distinct non-
overlapping sets (categories). The steps in the calculation of the
output of convolutional neural networks are elaborated below.

1) Input. Consider a signal, x, which consists of N samples,
and serves as input to a CNN, that is

x = [x(0), x(1), . . . , x(N − 1)]T .

This input is fed into the first layer of CNNs, which is
typically the convolutional layer.

2) Convolutional layer. This stage of CNNs employs con-
volution filters of M elements (cf. M×M-element filters
for images), with the matched filtering interpretation of
convolution filters as in (4). The matched filters in the
convolutional layer of CNNs are sometimes referred to
as convolutional kernels, and their lengths are typically
M = 3 or M = 5. Note that K different convolution filters
are required if we are looking for K distinct features in
the input, x. The elements of the k-th convolution filter
within the first convolutional layer are given by

w1
k = [w1

k(0), w1
k(1), . . . , w1

k(M− 1)]T ,

for k = 1,2, . . . ,K, with the superscript (·)1 indicating the
first convolutional layer. The corresponding outputs are

y1
k = x ∗c w1

k ,

where ∗c denotes the convolution of the time-reversed filter
(channel), w1

k , and the signal, x, (i.e. the cross-correlation

as in (3)). For more insight, the element-wise form of this
convolution, for M = 3, is given by

y1
k(n) = w1

k(0)x(n) + w1
k(1)x(n + 1) + w1

k(2)x(n + 2)

=
M−1

∑
m=0

w1
k(m)x(n + m). (8)

Observe that the limits of the above convolution sum are
reached when (n + m) = N − 1 for the input x(n + m)
and m = M− 1 for the feature w(m), so that last element
of y1

k(n) is y1
k(N − M). For example, with M = 3 as

the length of a convolution filter, the last element in
y1

k(n) becomes y1
k(N − 3). The output dimension of the

k-th convolution filter, y1
k , is therefore (N −M + 1)× 1.

With K convolution filters considered, the total number
of outputs from the first convolutional layer is therefore
K× (N −M + 1).
Remark 5: The total number of parameters (weights),
w1

k(n), in the first convolutional layer of CNNs is equal
to the product of the length, M, and the number, K, of
convolution filters, that is, M×K. Practical applications of
CNNs typically employ M� N, so that the total number
of parameters in the first (convolutional) layer of CNNs
is much smaller than in a corresponding fully connected
layer of neurons (last layer in Fig. 1), whereby each of
the N input signal samples is connected through weights
to each of the K neurons, a total of N × K parameters.

3) Bias. Like in standard NNs, a constant bias term may be
included at the convolutional layer of a CNN, to yield

y1
k(n) =

M−1

∑
m=0

w1
k(m)x(n + m) + b1

k ,

where b1
k denotes the bias term at the k-th convolution

filter of the first convolutional layer. The vector form of
the output of the first convolutional layer then becomes

y1
k = x ∗c w1

k + b1
k .

With the inclusion of the bias term, the total number of
coefficients at every convolution filter is increased by one.
Remark 6: We have seen in Remark 5 that the number
of weights (parameters) in the convolutional layer of a
CNN depends only on the size of the convolution filters.
With the bias term included, the total number of weights
for time-domain signals is therefore K(M + 1).

4) Zero-Padding. We have seen from Remark 5 that the
output of a convolution filter has N −M + 1 elements,
with N as the length of the input and M as the length of
the convolution filter – this is in contrast with standard
convolution where the output has N + M − 1 samples.
This is because the output of convolutions filters within
CNNs, as in (8), is calculated only over the available input
samples, [x(0), . . . , x(N − 1)]T , while standard convolu-
tion also uses samples outside n = 0, . . . , N − 1. These
are assumed either zero-valued or a periodic extension of
the input (circular convolution). For illustration, consider
the case with N = 8 and M = 3, so that the input signal
samples are x = [x(0), x(1), . . . , x(7)]T , and the weights
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Fig. 4. Operation of the convolutional layer within CNNs, which is illustrated
for an input, x(n), of size N=8 samples and with K=4 convolution filters
in the convolutional layer (this yields K = 4 outputs of this layer after the
activation and max-pooling operations). Various lengths of the convolution
filter, M ∈ {3,5,7,8} were considered. Top left: The case with N = 8 and
M = 3 gives N−M + 1 = 6 elements of the output at each convolution filter,
y1

1(n),y
1
2(n),y

1
3(n),y

1
4(n). Top right: The case with N = 8 and M = 5 gives

N −M + 1 = 4 elements of the output at each convolution filter y1
k(n),k =

1,2,3,4. Middle left: The case for N = 8 and M = 7 gives two elements
at each y1

k(n). Middle right: The case for M = N = 8 corresponds to the
standard FC layer, that is, with M = N the convolutional layer reduces to a
fully connected layer, as every convolution filter has now only one element in
its output. Bottom left and Bottom right: A zoom-in into the two extreme cases
with M = 3 and M = 8. For clarity, only the weights for the first channel,
w1(m), are shown and are color-coded. Observe the only three different
weights w1(m), m = 0,1,2 (shown in red, green, and blue) are present for
M = 3, while eight different weights w1(m), m = 0,1, . . . ,7 exist for the fully
connected layer, with M = 8 .

of the convolution filter w1
k = [wk(0), wk(1), wk(2)]T .

Since the convolution filter within CNNs must not use
any value of x(n) which lies outside of n = 0,1, . . . ,7,
then according to (8) we establish that:
• The first output sample, y1

k(0), is obtained by com-
bining x(0), x(1), x(2) with the weights w1

k =
[wk(0), wk(1), wk(2)]T .

• The second output sample, y1
k(1), is obtained by

combining x(1), x(2), x(3) with the weights w1
k .

• The last three “allowed” input signal samples are x(5),
x(6), x(7), so that the last output sample is y1

k(5).
• After calculating y1

k(5), we have exhausted the available
input data, and no more outputs are created.

Fig. 4 shows that since the last available output sample
is y1

k(5), the output of the convolution filter considered
has 6 samples, y(n) = [y1

k(0), . . . ,y1
k(5)]

T which is two

samples less than the length of the input signal, N = 8.
However, some applications require that the output of
the convolutional layer should be of the same size, N,
as the input signal (image), instead of having a reduced
dimensionality of N−M + 1. This can be achieved if the
input signal (image) is padded with an appropriate number
of zeros, which are placed before the first original sample
x(0) and after the last original sample x(N − 1). In this
way, if the input is padded with M− 1 zeros, then the so
augmented input dimension becomes N + M− 1, and the
corresponding dimension of the output of the convolution
filter is (N + M− 1)−M + 1 = N, which is equal to
the input dimension, N. For more detail, see Example 2.

Example 2. Zero-padding. Consider a convolutional layer
with M = 3 and N = 8. To ensure that output of convo-
lutional filters is of the same length as the input, we may
add M − 1 = 2 zeros which are placed at x(−1) = 0 and
x(N) = 0. The so “augmented” input signal xa = [x(−1) =
0, x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8) = 0]T
yields the convolution output (relative to the original input size)

y1
k(n) = w1

k(0)xa(n− 1) + w1
k(1)xa(n) + w1

k(2)xa(n + 1).

The first output sample, y1
k(0), is now obtained by combining

x(−1) = 0, x(0), x(1) with the weights w1
k using (8), while the

last output sample uses the last three input signal samples x(6),
x(7), x(8) = 0 of the zero-padded input. Notice that after zero-
padding with M− 1 = 2 zeros, the last output sample becomes
y1

k(7), so that the length of the output of the convolution filter
is now the same as the length of the original input signal.
Other strategies for zero-padding include those based on periodic
boundary conditions (e.g. for images with cylindrical geometry)
and reflection padding [22], to mention but a few.

Remark 7: In general, if the length of the convolution
filter is M, the input signal should be padded with (M− 1)
zeros to yield the “augmented” input length of N−M+ 1
samples and consequently a convolution output of length
N. For a convolution filter with an odd number of elements
M, the input signal may zero-padded symmetrically, by
adding (M − 1)/2 zero elements before the original
starting sample at n = 0, and (M− 1)/2 zero elements
after the original end sample at n = N − 1. For this
reason the length of the convolution filter, M, in CNNs
is typically an odd number, e.g. M = 3,5,7 as in Fig. 4.

5) Nonlinear activation function. Real–world signals are
typically nonlinear, while convolution is a linear operation.
This calls for a subsequent non-linearity to, for example,
restrict the output values to reside within a specified output
range, as in the case of sigmoid type of nonlinearities
(e.g. logistic or tanh functions) [14]. The most common
nonlinear activation function in CNNs is the Rectified
Linear Unit (ReLU), defined by (see Remark 3 for its
matched filtering interpretation)

f (y) = ReLU(y) = max{0,y} and f ′(y) = u(y),

where u(y) is the unit step function. In the context of
CNNs, the ReLU function has several advantages over
sigmoidal activation functions, as (i) unlike sigmoid nonlin-
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earities, it does not saturate for positive y, and thus yields
non-zero gradients for large y, (ii) its calculation is not
computationally demanding, even its derivative is a simple
to implement unit step function u(·), (iii) in practical
applications, networks with the ReLU activation converge
faster than those with the saturation-type nonlinearities
(logistic, tanh), and (iv) ReLU does not activate neurons
with a negative net-input, y, thus performing a kind of
sparsification by deactivation.
The output of the first convolutional layer, after applying
the activation function, now becomes

f (y1
k) = f (x ∗c w1

k + b1
k) = f (w1

k ,x).

In our example with M = 3, the element-wise output of
the ReLU becomes

f (y1
k(n)) =

f
(

w1
k(0)x(n) + w1

k(1)x(n + 1) + w1
k(2)x(n + 2) + b1

k

)
.

The operation of ReLU is elaborated in Example 3.

Example 3. Consider the output of a convolutional layer
within a CNN, given by yk = x ∗c w1

k + bk, which consists of
K = 3 convolution filters (channels), k = 1,2,3, for which the
element-wise values are given by
y1 = [ 0.35 0.49 −0.65 −0.65 −0.69 0.48]T

y2 = [−0.05 −0.06 −0.28 −0.21 0.13 0.37]T

y3 = [ 0.48 0.50 −0.77 −1.66 −0.76 0.71]T .
The element-wise output from the ReLU activation function then
performs a zeroing-out of all negative values in yk, to yield
f (y1) = [0.35 0.49 0.00 0.00 0.00 0.48]T

f (y2) = [0.00 0.00 0.00 0.00 0.13 0.37]T

f (y3) = [0.48 0.50 0.00 0.00 0.00 0.71]T ,
When allocating the correct and accurately aligned pro-

portion of backpropagated errors to the activated neurons in
Section III in the Supplement, it is convenient to introduce the
indicator matrix which designates the neurons which have been
activated/deactivated by ReLU. In our case, the indicator matrix
becomes

MReLU =

1 1 0 0 0 1
0 0 0 0 1 1
1 1 0 0 0 1

T

.

Since the ReLU produces zero outputs for negative arguments,
an issue arises in scenarios with many negative neuron outputs,
which makes the indicator matrix, MReLU , very sparse thus
leaving many neurons without a weight update – the so called
“dying ReLU” phenomenon. This problem can be mitigated
using a Leaky ReLU activation, whereby negative values of
the input are mapped onto small scaling factors, for example,
f (yk(n)) = 0.01yk(n), for yk(n) < 0.

6) Stride step (down-sampling). The convolution in (4)
is calculated based on shifting the convolution filter
one step at a time along the input; this may become
prohibitively computationally demanding for large-scale
problems. For sufficiently highly sampled (dense) and
slow-varying signals, this computational burden may be
relaxed by skipping several time instants before calculating
the next convolution. This amounts to downsampling the
original convolution output, y(n), whereby the degree
of downsampling is referred to as the stride (step). The

stride value of four, Stride4, would thus mean that the
convolution is calculated at every fourth time instant
(pixel) of the original signal/image, x(n). The stride
operator can be applied at various stages of CNN operation,
as illustrated in Example 4.

Example 4. Consider the output from the ReLU activation
function from Example 3, given by
f (y1) = [0.35 0.49 0.00 0.00 0.00 0.48]T

f (y2) = [0.00 0.00 0.00 0.00 0.13 0.37]T

f (y3) = [0.48 0.50 0.00 0.00 0.00 0.71]T .
The reduced-dimension output at a stride of 3 is then obtained
by down-sampling the outputs f (yk) by the factor of 3 to give

Stride3{ f (y1)} = [0.35 0.00]T

Stride3{ f (y2)} = [0.00 0.00]T

Stride3{ f (y3)} = [0.48 0.00]T .
The indicator matrix which corresponds to the inverse

operation of upsampling (inserting zeros) from Stride3{ f (yk)}
to the original output f (yk) is then given by

MStride3 =

1 0 0 1 0 0
1 0 0 1 0 0
1 0 0 1 0 0

T

.

Akin to the ReLU indicator matrix in Example 3, the indicator
matrix MStride3 serves to correctly align the weight update of
CNNs in the backpropagation learning stage (see Supplement).

7) Pooling. In addition to the stride type of downsampling,
the output signals at each CNN layer may be further
downsampled through the so called pooling operation; see
also Remark 4. A typical pooling operation employed in
CNNs is max-pooling which splits the considered signal
into non-overlapping P-sample long segments and returns
only the maximum value from each such segment (cf.
returning maximum values from P× P non-overlapping
segments in an image [23]). The output of the max-pooling
operator over P segments therefore becomes

o1
k(m) = max{ f (yk(mP + i)), i = 0,1, . . . , P− 1} (9)

= F1

(
x(n),w(n)

)
, m = 0,1, . . . , (N −M + 1)/P.

The corresponding indicator matrix, MMP, encodes the
positions of the original outputs, y(n), that “survived”
max-pooling; its elements are MMP

k (n) = 1 for

n = argmax{ f (yk(mP + i)), i = 0,1, . . . , P− 1} (10)

and MMP
k (n) = 0 otherwise, with n = 0, . . . , N−M + 1,

k = 1, . . . , K. The compact vector form of the output of
the max-pooling operator is therefore given by

o1
k = F1(w1

k ,x). (11)

The so reduced data representation space yields a corre-
sponding reduction in the number of weights in a CNN and
the computation burden, as shown in Example 5. Notice
that max-pooling also provides approximate translation
invariance, as it chooses the maximum value among P
neighboring samples, regardless of their position. Another
form of pooling is the average-pooling operator, whose
output represents an average of P neighboring samples.
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Example 5. Consider the output from the ReLU activation
function in Example 3. Then, the output from the max-pooling
operation, with P = 3, is obtained from f (yk) as

o1 =

max{0.35 0.49 0.00} max{0.00 0.00 0.48}
max{0.00 0.00 0.00} max{0.00 0.13 0.37}
max{0.48 0.50 0.00} max{0.00 0.00 0.71}

T

=

0.49 0.48
0.00 0.37
0.50 0.71

T

The corresponding indicator matrix for the upsampling from the
downsampled o1 to the original size of f (yk) is given by

MMP =

0 1 0 0 0 1
1 0 0 0 0 1
0 1 0 0 0 1

T

.

Notice that the max-pooling with P = 3 reduces the size of f (yk)
from the original 6 to 2, that is, by the same amount as when
employing the stride factor of 3 in Example 4. However, unlike
with the stride operation, the positions of the selected samples
(and the corresponding upsampling matrix) in max-pooling are
signal dependent.

8) Flattening. The outputs of the pooling operation, o1 in
(11), are in a vector form. These channel-wise vectors
can be concatenated into a flattened vector, oF, of which
the elements are (for k = 1, . . . ,K and n = 0, . . . , N −M)

o1
F

(
(k− 1)(N −M + 1) + n

)
= o1

k(n).

With no max-pooling, this vector is of size K(N−M+ 1),
while after max-pooling with a factor of P, the size of
the concatenated (flattened) vector, o1

F, becomes K(N −
M+ 1)/P. For images, the two-dimensional max-pooling
output is also flattened into a vector [24].
The entirety of the convolution-activation-pooling-
flattening chain in CNNs is visualised in Example 6.

Example 6. Consider the input signal with N = 32 samples,
shown in the top panel of Fig. 5, which is fed into the convolu-
tional layer of a CNN consisting of K = 4 channels (convolution
filters) of M = 5 samples each, followed by the ReLU nonlinear
activation function max{0,y1

k + b1
k}, k = 1,2,3,4, and max-

pooling with the factor of P = 2. The initial weights of the
convolution filters were Gaussian distributed random numbers
(common way of initializing CNNs), while at the max-pooling
stage, the signal was grouped into P = 2 samples long segments,
with the largest sample representing the output of this operation.
Fig. 5 depicts, in a step-by-step manner, the processing of the
input, x(n), by the convolution-activation-pooling chain of a
simple CNN given in Fig. 1 and Fig. 1 in the Supplement.

9) Repeated convolutions. Some applications may require
several repetitions of the convolutional step to search
for more complicated, hierarchical features in data; this
involves different convolution filter functions (features)
at every convolutional layer. Such repeated convolutional
may (or may not) employ the activation and pooling
functions, while flattening is performed only after the
repeated convolutional steps, as illustrated in Example 7.

Example 7. Consider the CNN from Example 6, but with
two successive convolutional layers, whereby the output signals,
o1

1(n), o1
2(n), o1

3(n),o
1
4(n) from the first convolutional layer

in Fig. 6 are used as inputs to the second convolutional layer.
The second convolutional layer comprises K = 5 convolution
filters, w2

1,p(n), w2
2,p(n), w2

3,p(n), w2
4,p(n), and w2

5,p(n), each
of length M = 3 and with p = 1,2,3,4. The outputs of the con-
volution filters in the second layer are denoted by y2

1(n), y2
2(n),

y2
3(n), y2

4(n), and y2
5(n). The ReLU activation function yields

only the positive outputs, max{0,y2
k(n) + b2

k}, k = 1,2,3,4,5,
followed by the max-pooling stage with the factor of P = 2, with
o2

1(n), o2
2(n), o2

3(n), o2
4(n) and o2

5(n) as the outputs. Finally,
the so generated outputs of the second convolutional layer were
flattened into a vector, o2

F(n), which serves as an input to another
convolutional layer or the FC layer. These operations, together
with the corresponding signal values, are depicted in Fig. 6.

10) Fully connected (FC) layers. The outputs of the convo-
lutional steps, after flattening, serve as inputs to standard
fully connected NN layers, as shown in Fig. 1. The FC
stage may be a fully connected multilayer structure or a
single output layer, as described in Example 8.

Example 8. An input signal with N = 16 samples, x(n), is
presented to the CNN shown in Fig. 7, which has a (one-
dimensional) convolutional layer suitable for temporal data.
The signal is processed with K = 4 convolution filters, w1

1(n),
w1

2(n), w1
3(n), and w1

4(n), each of length M = 5. The out-
put of these convolution filters is given by y1

1(n), y1
2(n),

y1
3(n), and y1

4(n). The ReLU activation function is applied to
these signals to produce, max{0,y1

1(n) + b1}, max{0,y1
2(n) +

b2}, max{0,y1
3(n) + b3}, and max{0,y1

4(n) + b4}. The max-
pooling with the factor P = 2 yields the signals o1

1(n), o1
2(n),

o1
3(n), and o1

4(n), which are combined into the flattened output
of the convolutional layer, denoted by o1

F(n). This signal is used
as an input to the first FC layer with 10 neurons, whose outputs
feed the second FC layer with two SoftMax output neurons. The
overall forward propagation path in a CNN, from the input layer
through to the output of the final FC layer, is depicted in Fig. 7.

V. INITIALISATION AND BACK-PROPAGATION

All stages of the CNNs training are elaborated and visualized
in Example 9. The initialisation and backpropagation proce-
dures are described in detail in Example 2 in the Supplement.

Example 9. To illustrate training and testing stages of CNNs in
a step-by-step manner, consider a two-layer network in Fig.
1 and Fig. 1 in the Supplement, with one convolutional layer
and one fully connected layer. The considered input signal had
N = 8 samples, and contained a noisy version of one of the two
characteristic patterns (features): (i) a variant of the triangular
shape pattern, f eature1 = [−0.5, 1, −0.5] + ν(n), for which
the target output (class) is t = [1, 0]T or (ii) a variant of a
rectangular three-sample f eature2 = [1, 1, 1] + ν(n), for
which the target output (class) is t = [0, 1]T , where ν(n)
denotes random uniformly distributed noise whose values lie in
the region [0,0.3]. These noisy signals were further corrupted
by additive white Gaussian noise with the standard deviation of
0.05, and then normalized to unit energy, as shown in Fig. 8(a).
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Fig. 5. Visualisation of the convolution-activation-pooling chain in a CNN, with an N = 32 sample input, four M = 5 sample convolution filters (K = 4), the
ReLU nonlinear activation, max{0,y1

k + b1
k}, k = 1,2,3,4, and max-pooling with the factor P = 2. The weights of the convolution filter were generated as

Gaussian random numbers (common in CNN initialization). The output from the max-pooling stage serves either as input to the next convolutional layer (in
CNNs with multiple convolutional layers) or it is flattened to feed neurons of a standard FC neural network layer (our case).

Convolution filters of M = 3 samples were used within K = 3
channels at the convolutional layer. The SoftMax activation
function (see the Supplement) was used at the output of the
FC layer, with two output neurons that correspond to the two
corresponding patterns in the target signal, t, as described above.
The network was trained by the backpropagation algorithm,
described in Section III in the Supplement. The training stage
employed 200 random realizations of the input, x, which were
presented 10 times to the network, that is, the training was
performed over 10 epochs of 200 random signal realizations.
The network was tested over 100 new random signal realizations,
which were not seen by the network during the training stage.

Details of the forward path of the CNN considered here are
given in Fig. 5 - Fig. 7. Step-by-step implementation of the
forward and backward calculations are given in the Supplement.
Based on the above set-up, the training stage was performed
through back-propagation, with the signal values at the different
stages of the process given in Example 2 in the Supplement.

(a) After the first training cycle is completed, the process is repeated
with a new input noisy input signal, x, randomly assuming the
presence of either feature1 or feature2 at a random position
within the signal; some noisy input features are shown in Fig.
8(a). The training and testing stages are visualised in Fig. 8.

• The CNN output represents the “probabilities” of the presence of
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Fig. 6. Operation of a CNN from Example 6, but now with two convolutional layers, whereby the output from the first convolutional layer serves as input
to the second convolutional layer. Five convolution filters (K = 5) were used in the second convolutional layer, each M = 3 samples long, followed by the
ReLU nonlinear activation function, max{0,y2

i + b2
i }, and max-pooling with the factor of P = 2, whereby the signal from the previous step is grouped into

segments of two samples with the largest sample serving as the overall output. The signal from the max-pooling stage then serves either as input to the next
convolutional layer (in CNNs with multiple convolutional layers) or it is flattened to feed neurons of a standard fully connected (FC) neural network layer (as
in our case). The weights of the convolution filter were generated as random Gaussian numbers (a common way of CNN initialization).

the two features in the noisy input, denoted respectively by P1 and
P2. Therefore, when feature1 is present in the noisy input, x, the
target signal is t1 = [1, 0]T and the output of the SoftMax layer
in an ideal case should be close to P1 = 1 and P2 = 0. Regarding
the presence of feature2 in x, the corresponding target signal
is t2 = [0, 1]T and the SoftMax outputs should ideally approach
P1 = 0 and P2 = 1. The evolution of the SoftMax output during
training is illustrated in Fig. 8(b), where for a consistent account
of the overall accuracy:
– For the target t1, the black “+” denotes the values of P1 and

the green“·” the values of P2,
– For the target t2, the black “+” denotes the values of P2 and

the green“·” the values of P1.
In this way, a perfectly trained CNN yields all black “+” marks
at 1 and all green “.” marks at 0. Note that for the considered
scenario, P1 + P2 = 1 always holds for the SoftMax outputs.

• The evolution of weights in the fully connected layer during the
training iterations is depicted Fig. 8 (c). Observe the gradual
convergence of all the weights along the training iterations.

• The training process was performed as above; the CNN was
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Fig. 7. A simple CNN architecture which is suitable for finding features in
temporal signals. It consists of one convolutional layer, a ReLU activation
stage, a max-pooling stage, and two FC layers. The second (SoftMax FC layer)
has two output neurons. Variants of this architecture are used in Example ??.

trained over 10 epochs with 200 random realisations of the
noisy input, which contained either f eature1 or f eature2, in
each epoch, and with no max-pooling employed.

• After the training was completed, the performance of the CNN
was tested over 100 new random realizations of the noisy input
signal, with the results shown in Fig. 8(d). Observe the success
of training, as indicated by the correct decisions in all 100 new
cases presented to the network, where the black ”+” and green

“.” marks notation is used as described above.
(b) The same setup as in Fig. 8 was next used within a CNN with the

max-pooling operation at the convolutional layer, whereby max-
pooling with a factor P = 3 was performed. In the case without
max-pooling, we used K = 4 channels in the convolutional layer,
while in the case with max-pooling, the number of channels
was reduced to K = 3. In this way, the number of weights
with no max-pooling was ((N−M+ 1)K)× 2 = 24× 2 = 48,
compared with ((N − M + 1)K/P) × 2 = 6× 2 = 12 when
max-pooling was used. The results are shown in Fig. 9.

(c) Finally, the same signal was used to train a CNN with one
convolutional layer and two fully connected layers, with K = 5
channels in the convolutional layer and the factor P = 3 in
the max-pooling operation. The number of input neurons in the
second fully connected layer was N2 = 4. The SoftMax with two
output neurons was used again to produce the decision. The
results are shown in Fig. 10, using the same notation as above.
Observe that in this case the convergence of the weights in the
output layer was faster than in Case a) and Case b), as after
about 300 training cycles the weights effectively approached their
steady values and remained unaltered until the end of training.

The testing of this network over 100 new random realizations
of the input signal was 100% successful.
Full details of every step in the forward and error backpropaga-
tion paths are given in Example ?? in the Supplement.

0 2 4 6 8
-0.5

0

0.5

1

0 2 4 6 8
-0.5

0

0.5

1 (a)

Fig. 8. Operation of a CNN similar to that shown in Fig. 7, which consists
of one convolutional layer and one FC layer, with two neurons at the output
(SoftMax) layer, max-pooling with the factor P = 1 (no max-pooling), and
K = 4 channels at the convolutional layer. The FC layer had therefore ((N −
M + 1)K) × 2 = 24 × 2 = 48 weights. The task was to identify the two
features, a rectangular feature1 and a triangular feature2 from noisy inputs,
x(n). (a) Some random realizations of the inputs used in the CNN training and
testing. (b) The output probabilities of the CNN for the task of identification
of the presence of a feature (either feature1 or feature2) are denoted by a
black “+” if the corresponding correct SoftMax output should be equal to 1,
and by a green “·” if the corresponding correct SoftMax output should be 0.
(c) Evolution of the 48 weights in the FC layer along the training process.
Some of the weights (e.g. the top and bottom curve) did not fully converge
to their optimal values over the 2,000 training iterations, causing a minor
uncertainty at the output. (d) Test results over 100 random realisations of x,
with“+” and “·” as above. Observe an almost perfect identification of the two
patterns in x.

VI. DIMENSIONALITY REDUCTION THROUGH 1-FILTERS

Repeated convolutions, that is, a sequence of subsequent
convolutional layers, are often used in CNNs to detect so-
called hiearchical features, however, this comes at the expense
of an increase in the dimensionality of convolution filters in
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Fig. 9. Illustration of the operation of a CNN with one convolutional layer and
one FC layer with two SoftMax output neurons, max-pooling with the factor
P = 3, and K = 3 convolutional channels. This helped reduce the number
of weights in the FC layer to only ((N − M + 1)K/P)× 2 = 6× 2 = 12
weights. Top: Output probabilities of the CNN for the task of identification of
the presence of a feature (either feature1 or feature2) in Figure 8 (a) are
denoted by a black “+” if the corresponding correct SoftMax output should be
equal to 1, and by a green “·” if the correct SoftMax output should be 0. The
output of the CNN yields almost perfect probabilities of the detection of the
two input noisy patterns after about 1,150 iterations of the training procedure.
Middle: Evolution of weights of the FC layer shows that they settled to their
final values after about 1,150 iterations. Bottom: The network output for test
data; observe the 100% success in the classification of the two patterns of
interest from noisy inputs, which was achieved with 12 weights, only a fraction
of the 48 weights required for the case with no max-pooling in Figure 8.

the 2nd and subsequent convolutional layers, compared to the
1st convolutional layer. The increase in the dimensionality
of the parameter space with the number of inputs channels
to a convolutional layer can also be observed by comparing
Fig. 5, which illustrates the operation of the 1st convolutional
layer that has a single-channel input, x(n), and Fig. 6 which
illustrates the operation of the 2nd convolutional layer that has
a multi-channel input, o1

p(n), p = 1,2,3,4.

More precisely, the input, x(n), to the 1st convolutional layer
(top panel in Fig. 5) is a vector with N samples, while the input
to the 2nd convolutional layer (top panel in Fig. 6) is the output
of the 1st convolutional layer (third panel in Fig. 5) which is
in the form of K = 4 channel-wise output vectors, o1

p(n), of
N−M + 1 samples each, that is, a total of K× (N−M + 1)
samples. In other words, the convolutional kernels within the 1st

convolutional layer operate in the temporal domain, while the
corresponding kernels in the 2nd convolutional layer operate in
the joint channel-time domain. This increase in dimensionality
quickly becomes computationally prohibitive for multiple
successive convolutional layers (repeated convolutions).

A natural way to reduce the parameter space would therefore
be to reduce the dimensionality of the input to the repeated

Fig. 10. Illustration of the operation of the CNN from Fig. 7 which consists
of one convolutional layer and two FC layers, with two neurons at the output
SoftMax layer, max-pooling with the factor P = 3, and K = 5 convolution
channels. The number of neurons in each FC layer was N2 = 4. This reduces the
number of weights in the FC layer to ((N−M+ 1)K/P)×N2 + N2× 2= 48
weights. The outputs were designated as in Figures 8 and 9. Top: Perfect
training accuracy was achieved over only 5 epochs with 200 iterations of
random inputs for each epoch, with the output probabilities converging to
their correct values after about 320 training iterations. Middle: Evolution of
the 48 weights in the first FC layer along the training procedure. The weights
converged to their final values after about 320 iterations. Bottom: Network
output for test data; observe the 100% success in the classification of the two
patterns of interest from noisy inputs.

convolutional layers. To this end, we may replace the 2nd

convolutional layer with a suitably chosen Multiple Input Single
Output (MISO) system, to produce a single-channel output
from a multi-channel input by means of the so called 1-filter.
This is a convolution kernel of width M = 1 which effectively
takes the weighted average of all input channels (along the
channel dimension), for a fixed temporal index, n. In this sense,
1-filters are a special type of dimension-wise convolution, since
they operate along the channel dimension only. Notice that
dimension-wise convolutions can also be performed across the
other dimensions of the input.

Motivated by the principle of separability of multi-
dimensional operators into a sequence of dimension-wise
operators [2], [25], the concept of separable convolution com-
prises successive dimension-wise convolutions along distinct
dimensions of the input in order to reduce the dimensionality of
the parameter space. This allows us to separate each 2D channel-
time convolution filter in the 2nd layer – designated by the
respective indices p and n of the weights w2

k,p(n) – into two
independent lower-dimensional (1-dimensional) convolution
kernels, of which one operates along the channel dimension,
p, and the other along the temporal dimension, n. This is akin
to replacing a 2D convolution in images by a sequence of one
1D convolution in the vertical direction, followed by another
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1D convolution in the horizontal direction; in this way, a 2D
convolution kernel with e.g. 6× 6 = 36 elements would be
replaced by two 1D kernels of respective sizes 6× 1 and 1× 6,
a total of 12 elements and a 3-fold reduction in size.

In the same spirit, the operation of the 2nd convolutional
layer for signals can be simplified as follows.

1) Filtering along the p-index (channel dimension). For
every sample index, n, of the input to the 2nd convolutional
layer, o1

p(n), a weighted average is performed along the
channel index p, p = 1,2, . . . ,K. This operation requires
only one kernel of K elements per sample index, n. Since
there are K2 convolution filters in the 2nd convolutional
layer, we need K2 different weighted averages (kernels) of
this type in order to produce the K2 inputs into the second
stage. The weights of the weighted averaging filters in
this step are denoted by w21

k,p(0), with p = 1,2, . . . , K and
k = 1,2, . . . ,K2, so that the output of this stage becomes

o21
k (n) =

K

∑
p=1

o1
p(n)w

21
k,p(0) k = 1, . . . , K2. (12)

Since the filtering is performed along the channel index, p,
and not along the time index, n, these weights are channel-
dependent but not time-dependent. In other words, the
averaging kernels, w21

k,p(0), have the effective width of
M = 1, and are called 1-filters.

2) Filtering along the n-index (time dimension). Now
that we have “marginalized” the original joint channel-
time convolution operation along the channel dimension,
we can employ a “standard”, temporal, convolutional
layer as the second step in the approximation of the 2nd

convolutional layer, that is, based on the kernel weights
w22

l (m), l = 1,2, . . . ,K2, m = 0,1, . . . , M2− 1. In this way,
the convolutions are performed along the time index, n,
but not along input channel index, p, for each of the K2
convolution channels. This is because the inputs to this
stage have already been averaged out in Step 1. Therefore,
the overall output of this stage becomes

y2
k,l(n) =

M2−1

∑
m=0

o21
k (n + m)w22

l (m),

k = 1, . . . , K2, l = 1, . . . , K2. (13)

The above two-step procedure has allowed us to employ two
sets of double-indexed filters, w21

k,p(0) and w22
k (m), instead

of the original single set of tripple-indexed filters, w2
k,p(n),

for every convolution channel of the 2nd convolutional layer.
Notice that, since in Step 1 the channel dimension has been
marginalized out through 1-filters, the temporal convolution
channels in Step 2 are shared among all K2 output signals
from the Step 1, as illustrated in Fig. 2 in the Supplement.

Example 10. To indicate the extent to which convolutions with
1-filters can reduce the number of required CNN weights, recall
that the original number of weights in the K2 convolution filters
of width M2 within the second convolutional later was M2K×
K2. If the convolutions with 1-filters are employed after the

first convolutional layer, this gives K× K2 weights, w21
k,p(0), of

the 1-filters in the first step. The next step then employs K2
standard convolution filters with weights, w22

k (m), which are of
full length M2, with a total number of the weights M2 × K2.
This yields a significant reduction in the total number of weights
compared to the original M2KK2 tripple-indexed weights, since
KK2 + M2K2 = (M2 + K)× K2 < (M2K)K2.

To further depict this property, consider Fig. 6, with M = 4, K = 4,
M2 = 3, and K2 = 5, so that the total number of filter weights
in the second convolutional layer is 3× 4× 5 = 60. With the use
of 1-filters, the number of weights in the second convolutional
layer reduces to 4× 5 + 3× 5 = 35, as illustrated in Fig. 11.

Remark 8: The operation of convolutions with 1-filters em-
ploys the frequently used principle of separability of functions
which operate on multiple variables, akin to the separability
of a joint pdf of multiple Gaussian random variables into the
product of individual distributions or Kronecker separability of
multi-indexed tensors [2], [25]. In the same spirit, by means
of the above two-step dimension-wise separable convolutions,
we have been able to replace the original single set of triple-
indexed filters, w2

k,p(n), in the repeated 2nd convolutional layer
with two sets of double-indexed filters, w21

k,p(0) and w22
k (m). In

this way, a joint channel-time filtering at the 2nd convolutional
layer has been separated into two dimension-wise operations:
(i) a weighted average over the channel index (akin to weighted
ensemble average over convolution kernels) and (ii) filtering
along the temporal dimension, to yield a considerable reduction
in the number of parameters. Of course, convolutions with 1-
filters are an approximation, in the same way a 2D filter in
images is not equivalent to applying two independent 1D filters
separately along the vertical and horizontal axis.

Remark 9: Upon employing the principle of separable convo-
lutions, the output of the 2nd (and other repeated) convolutional
layer(s) is produced through the standard temporal convolutions
of reduced dimensionality, that is, based on single-channel
outputs of the 1-filters and the feature kernels. This is precisely
the matched filtering operation whereby the convolutional
kernels in Step 2 above are matched to the higher-order features
in the weighted averaged o21

k (n), as described in (3) and (8),
and Example 3. Note that different lengths of 1× 1 channel-
wise filters may be used in images.

VII. CONCLUSION

We have employed the matched filtering perspective as a
mathematical lens to help demystify the principles of infor-
mation flow and learning in Convolutional Neural Networks
(CNN). A close examination of the convolutional layer within
CNNs has revealed a direct and intuitive link with the task of
finding features (patterns) in data through matched filters – a
common paradigm in systems engineering. Such a perspective
has enabled a seamless transition between the well understood
and theoretically supported matched filtering paradigm and
feature identification mechanisms in CNNs, together with
providing a unifying platform for the analysis and interpretation
of the various steps in both their forward pass and learning
procedures. The matched filtering perspective has been shown,
both through analysis and detailed visualization of every step
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Fig. 11. Illustration of the operation of convolutions with 1-filters in the 2nd convolutional layer from Fig. 6. Step 1: The outputs from K = 4 channels of
the first convolutional layer, o1

p(n), p = 1,2,3,4, undergo a spatial weighted average (across the channel index p and for every fixed time index n) using
four-sample (since K = 4) weights w21

k,p(0), k = 1,2,3,4,5. Since there are K2 = 5 assumed channels in the 2nd convolutional layer, this weighted average is
performed K2 = 5 times, based on five independent averaging filters to marginalise. The total number of the weights in this step is KK2 = 20. Step 2: The so
obtained K2 = 5 outputs from Step 1 are used as inputs to K2 = 5 channels of a “standard” convolution filter, w22

k (m), of length M2 = 3, which performs
convolution along the time index, n. The total number of weights in this step is K2 M2 = 15. The total number of adaptive weights in Step 1 and Step 2 is
therefore KK2 + K2 M2 = 35. On the other hand, if the convolution filters in the 2nd convolutional layer were applied directly to the K = 4 outputs of the 1st

convolutional layer, as in Fig. 6, we would have had K2 = 5 filters with K = 4 outputs each (inputs to the second layer) and the length of every filter would
have been M2 = 3, a total KK2 M2 = 60 adaptive weights as in the case shown in Fig. 6 (second panel).

of their operation, to permit the introduction of CNNs in
a theoretically well founded and physically meaningful way.
This is likely to be beneficial for research communities that
do not rely on black box approaches, such as those working
on various aspects of cybernetics, systems science and sensor
signal processing. Moreover, the generic nature of the matched
filtering perspective on CNNs opens new vistas for further
developments in the area and admits generalisation to higher
dimensional [26] and irregular domains [27], [25]. In addition
to providing a basis for extensions to image-CNNs [23], the
material may be useful in lecture courses on CNNs or indeed,
as a step-by-step guide for the intellectually curious reader.
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Convolutional Neural Networks Demystified: A
Matched Filtering Perspective Based Tutorial

Ljubiša Stanković, Fellow, IEEE and Danilo Mandic, Fellow, IEEE

SUPPLEMENTARY MATERIAL

The following material supports the main body of the manuscript and provides further evaluation, quantification, and more
details on the various steps and procedures considered.

Notation convention. For convenience of cross-referencing, the equations and figures from the main text body of this article
will be denoted with the prefix ‘P’, for example, (P-1) refers to equation (1) in the article and Fig. P-1 refers to Fig. 1 in the
article.

I. MOTIVATION: MITIGATING THE CURSE OF DIMENSIONALITY

To put the effects of Curse of Dimensionality into perspective, even a modest resolution VGA image, with 640× 480 pixels,
contains a total of 307,200 pixels, while a 1,920× 1,080-pixel HDTV image comprises 2,073,600 pixels. In the context of
neural network (NN) based processing of such images, the dimension of the input layer typically equals the number of image
pixels so that even for e.g. a low-resolution VGA image which is fed into a relatively standard 1,000-neuron fully connected
hidden layer, the number of NN parameters becomes 307,200× 1,000≈ 3× 108 [1], [2], [3]. A subsequent fully connected
layer with e.g. 1,000 neurons would require 1,000× 1,000 = 106 additional parameters, so that the computational burden for
deep neural networks (DNN), which may involve dozens and hundreds of hidden layers, quickly becomes unmanageable on
standard computers.

Advances in computer power have empowered data analysts with the ability to approach DNN learning in a heuristic and
ad-hoc manner – a brute force black box approach. On the other hand, through the use of domain knowledge and local
information from a system engineering viewpoint, we could both simplify the processing chain and make DNNs more physically
interpretable and theoretically better grounded – a subject of this tutorial.

Convolutional neural networks have become a standard tool in data analytics, however, their benefits would be greatly
enhanced if they were developed and adopted by an extended community which includes practitioners of systems science who
routinely analyse real-world sensor data. To this end, an effort to demystify the operation of DNNs is critical to resolving the
issues which arise from their black box nature, while employing any available “domain knowledge” in the form of, for example,
some well-understood data association principles would help understand their operation [4], [5] and aid their interpretability and
explainability. In this sense, the key overarching question remains that of justifying the use of convolution as an appropriate
operator for the detection of features in input data – a subject of this work.

II. FORWARD PATH IN CNNS

We first provide a brief intuition on the application of the matched filtering perspective of CNNs to image inputs.

A. Intuition for operation on images

Some of the Remarks in the main body of this article can be readily extended to cater for image inputs, as follows.
• Regarding Remark P-1, the same principle holds for images, whereby the presence of a two-dimensional feature, w(m,n),

in an image is established through a two-dimensional matched filter which performs the convolution with the “template”
w(−m,−n) by sliding this pattern along the image in both spatial directions and taking a dot product with the corresponding
image portion.

• Regarding Remark P-5, if an image is considered, then the output image of the convolution filter is of the size (N −
M + 1)× (N −M + 1). There are K such images in the convolutional layer so that the total number of convolution
filter weights becomes K×M2, which is again typically much smaller than the K× N2 connections in the standard fully
connected layer.

L. Stanković is with the University of Montenegro, Podgorica, Montenegro. D. P. Mandic is with Imperial College London, London, United Kingdom.
Contact e-mail: ljubisa@ucg.ac.me
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• Regarding Remark P-6, for an image, the total number of weights is K(M2 + 1).
• Regarding Remark P-9, for images we may use different lengths of 1× 1 channel-wise filters to reduce, or even increase

(if zero-padding is present) the number of weights in the second step of the “convolutions with 1× 1 filters”.

B. Relation between convolutional neural networks and standard neural networks

Fig. P-4 provides a simple and intuitive connection between CNNs and standard fully connected NNs. This is further
elaborated in Example 1.

Example 1. Relation to standard neural networks. To show that the input-output relation in a convolutional layer of a CNN simplifies
into that of a standard fully connected neural network (FCNN) as a special case, consider a general element-wise form of the “net
input” (before the activation function) at an unindexed neuron, given by

y(n) =
N

∑
k=1

wkxk(n) (1)

where xk(n) designates the k-th input to the neuron at a time instant, n.
When it comes to CNNs, N samples of the signal, x(n), represent the input layer (one training datum). These samples are used to

produce K outputs of the first convolutional layer, so that (with a slight abuse in indexing) its input-output relation can be expressed in
an FCNN-form as

yk =
N−1

∑
m=0

w1
k(m)x(m) = w1

k(0)x(0) + w1
k(1)x(1) + · · ·+ w1

k(N − 1)x(N − 1). (2)

A comparison between the output of an FCNN layer in (1) and its CNN–like counterpart in (2) with the expression for the convolution
filter in (P-8) shows that for M = N the standard neural network is a special case of the CNN. Indeed, for M = N the relation in
(P-8), becomes

y1
k(n) = w1

k(0)x(n) + w1
k(1)x(n + 1) + w1

k(2)x(n + 2) + · · ·+ w1
k(N − 1)x(n + N − 1).

which is conformal with (2). Since x(n) is defined for n = 0,1, . . . , N − 1, when no zero-padding is applied to the input signal, this
expression can be calculated only for n = 0 to yield

y1
k = y1

k(0) = w1
k(0)x(0) + w1

k(1)x(1) + w1
k(2)x(2) + · · ·+ w1

k(N − 1)x(N − 1), for k = 1,2, . . . ,K, (3)

which is identical to (2). This is further elaborated in Fig. P-4 which illustrates the operation of the first convolutional layer in CNNs
for a range of convolution kernel widths, M, and also supports the choice M� N.

Note: All results which are derived next for the convolutional layer also hold for the standard, fully connected layer, as a special case with
y1

k = y1
k(n), n = 0, and M = N.

K=4 convolution 
filters with M=3

Max pooling 
       P=3

   ReLU


Flattening

Input signal 
N=8

      FC
      FC

SoftMax 
S=2

Fig. 1. Information flow in a CNN which consists of: (i) input layer with N = 8 samples, (ii) convolutional layer with K = 4 convolution filters (channels) of
length M = 3 to yield N −M + 1 = 6 samples at their outputs, (iii) ReLU activation stage, (iv) max-pooling stage with a factor of P = 3, which reduces the
outputs from the convolutional channels to 2 samples each, (v) flattening stage with 8 samples arising from the 4 concatenated outputs of the pooling stage,
and (vi) two fully connected output layers.
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K=4 convolution 
filters with M=3

Input signal 
N=8

1st convolutional layer 2nd convolutional layer with 1-filters

K2=3  1-filters  
which combine K=4 
channels 

K2=3 convolution 
filters with M2=4

w1
1
(n) 

o21
3(n) 

w21
2,p(0) 

o21
1(n) 

o1
4(n) w21

3,p(0) 

w21
1,p(0) 

w22
3
(n) 

o21
2(n) 

w22
1
(n) 

o1
1(n) 

w1
4
(n) 

y2
k,l(n) Max-pooling P=3 

Flattening 

Fig. 2. Illustration of the operation of the convolutions with 1-filters in the 2nd convolutional layer. Step 1: The outputs from K = 4 channels of the first
convolutional layer undergo a weighted average along the channel dimension using four-sample weights w21

k,p(0), k = 1,2,3,4. Since there are K2 = 3 channels
in the 2nd convolutional layer, the weighted average is performed K2 = 3 times based on three independent averaging filters. The total number of the weights
in this step is KK2 = 4× 3 = 12. Step 2: The so obtained K2 = 3 outputs are used as inputs to K2 = 3 channels of a convolution filter, w22

k (m), of length
M2 = 4. The total number of weights in this step is K2 M2 = 3× 4 = 12. The total number of adaptive weights in the two steps is KK2 + K2 M2 = 24. If the
convolution filters were applied directly to the K = 4 outputs of the first convolutional layer, we would have K2 = 3 filters for each of K = 4 outputs (inputs to
the second layer) and the length of each filter would have been M2 = 4, a total KK2 M2 = 48 weights for the adaptation.

III. UPDATING CONVOLUTION WEIGHTS: BACK-PROPAGATION

The parameters (weights) of a CNN are typically updated in a supervised manner, through a gradient-based learning process
known as the back-propagation (BP) algorithm. Given the multi-layer structure of CNNs and since the estimation error can
be observed only at the output neurons, the BP algorithm needs to calculate the gradients of the objective function of the
optimisation process (e.g. error power) with respect to every single parameter in both the output layer and hidden layers of
neurons. These gradients effectively represent the sensitivities of the objective function (e.g. output error power) to each of the
network parameters (that is, the proportion of the total error which can be attributed to a given network parameter). Those
parameter sensitivities are then used to iteratively update all CNN parameters until a certain stopping criterion is met or the
training data set is exhausted.

1) Initialization: Unlike standard linear adaptive systems where the initial weight values are usually set to zero, the initial
values of weights in neural networks are typically assumed as random (and different) for every parameter in each channel and
layer. Intuition tells us that since the weights wk(m) multiply with, in general, Nin input signal values (at the considered input
neurons of any layer), the only requirement is that the choice of the initial weights should preserve the expected energy of the
output of the considered layer. This is achieved, for example, if the initial weights are Gaussian distributed, with

wk(m) ∼

√
2

Nin
N (0,1).

The factor of 2 is used since, on the average, the ReLU activation function will remove negative output values, which account
for a half of the expected signal values and thus for half of the signal energy.

Another possibility is to use uniformly distributed initial weights, wk(m), whereby the sum of Nin initial weights, ∑Nin
m=1 wk(m),

has a unit variance. Such uniformly distributed weights are defined on the interval

wk(m) ∼
[
−

√
6

Nin
,

√
6

Nin

]
.

Now, because the variance of a uniform random variable is Var{wk(m)} = 6
Nin

1
3 , then the variance of a sum of Nin such

random variables, upon dividing by 2 to account for the effects of the ReLU activation, will be of unit variance. Such initial
values are called the He initial values.

If the number of output neurons for the considered layer, Nout, is also taken into account within weight initialization, then
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we arrive at the Xavier initialization of the weights, given by [6]

wk(m) ∼

√
2

Nin + Nout
N (0,1).

The He initial values, when the the output neurons are included, are uniformly distributed within the interval

wk(m) ∼
[
−

√
6

Nin + Nout
,

√
6

Nin + Nout

]
.

2) Back-propagation in a two-layer CNN: For clarity, consider first the weight update in the simplest CNN which consists
of a convolutional layer and a fully connected output layer, such as the network depicted in Fig. P-1.

Convolutional layer. We have seen in (P-8) and Fig. P-5 that for the input x = [x(0), x(1), . . . , x(N − 1)]T , the output signal
of every channel (convolution filter), k, of the convolutional layer of the CNN with K filters of the width M, is given by

y1
k(n) = w1

k(0)x(n) + w1
k(1)x(n + 1) + · · ·+ w1

k(M− 1)x(n + M− 1) =
M−1

∑
m=0

w1
k(m)x(n + m), (4)

where the superscript (·)1 designates that the variable in hand belongs to the first (convolutional) layer of a CNN. The overall
output for every channel of the convolutional layer is then obtained after the bias term is included and upon the application of
the ReLU activation function, to yield

o1
k(n) = f

(
y1

k(n) + b1
k
)
. (5)

For simplicity, we shall first assume that no max-pooling or any other down-sampling strategy is performed.
The K channel outputs from the convolutional layer, each of length N −M + 1, are next stacked (flattened) into a vector of

length K(N −M + 1), which serves as input to the second, fully connected layer with S outputs, of the considered CNN.
Each of the K(N −M + 1) so flattened outputs of the convolutional layer, which contains the signal samples

[o1
1(0), . . . ,o1

1(N −M), o1
2(0), . . . ,o1

2(N −M), . . . ,o1
K(0), . . . ,o1

K(N −M)]T

is connected to each of the S neurons of the fully connected output layer to produce the overall CNN outputs of the form

y2
k = w2

k(0)o
1
1(0) + w2

k(1)o
1
1(1) + · · ·+ w2

k(N −M)o1
1(N −M)

+ w2
k(N −M + 1)o1

2(0) + · · ·+ w2
k(2(N −M + 1)− 1)o1

2(N −M)

...

+ w2
k((K− 1)(N −M + 1))o1

K(0) + · · ·+ w2
k(K(N −M + 1)− 1)o1

K(N −M), (6)

for k = 1,2, . . . ,S where the superscript (·)2 designates that the variable in hand belongs to the second (fully connected) layer
of a CNN. Note that the number of weights in the k-th FC layer is SK(N −M + 1). The index k is used here (as in all other
layers) to denote the index of the channel of the output. According to Fig. P-4 (middle row-right), in the case of a FC layer,
each output has one sample, which means that the index k in the FC layer (including the output layer) denotes the index of the
output signal (neuron).

A commonly used loss function (also called the objective function or the cost function) in the assessment of the performance
of neural networks is the mean square error (MSE) between the label predicted by the network, y2

k , and the true label, tk, which
is given by

L =
1
2

S

∑
k=1

(y2
k − tk)

2, (7)

The target output, tk, is also called the desired output or the teaching signal, and y2
k is the value at the k-th output neuron of

the FC layer.

Training process. To establish the relations for a gradient descent type of update of the weights in both the convolutional layer
and the fully connected layer within a CNN (that is to minimise the convex loss in (7) in an iterative manner through a training
process), we shall first consider the convolutional layer, for which the weights of the convolution filters are given in (4)-(5).
Then, the gradient weight update is in the form

w1
k(m)new = w1

k(m)old − α
∂L

∂w1
k(m) |w

1
k(m)=w1

k(m)old
. (8)
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The element-wise values of the above gradient of the loss function with respect to the CNN weights are then calculated as

∂L
∂w1

k(m)
= ∑

n

∂L
∂y1

k(n)
∂y1

k(n)
∂w1

k(m)
= ∑

n

∂L
∂y1

k(n)
x(n + m) =

∂L
∂y1

k(m)
∗c x(m), (9)

where (4) is used for the calculation1 of ∂y1
k(n)/∂w1

k(m).

Remark 1: Observe that the above gradient of the loss function combines the sensitivities ∂L
∂y1

k(n)
and the inputs, x(m), in a

way which is precisely the matched filter relation in (P-3).
The sensitivities, ∂L/∂y1

k(m), are also called the delta error function, ∂L/∂y1
k(m) = ∆1

k(m), and can be evaluated as

∆1
k(m) =

∂L
∂y1

k(m)
= ∑

p

∂L
∂y2

p

∂y2
p

∂y1
k(m)

= ∑
p

∂L
∂y2

p

∂y2
p

∂o1
k(m)

∂o1
k(m)

∂y1
k(m)

= ∑
p

∆2
pw2

p
(
(k− 1)M + m

)
u
(
y1

k(m)
)

(10)

where u(·) is the unit step function which arises as the derivative of the ReLU activation in the calculation of ∂o1
k (m)

∂y1
k(m)

, while

the relation in (6) is used for the calculation of ∂y2
p/∂o1

k(m) = w2
p((k− 1)M + m) and

∆2
p =

∂L
∂y2

p
= y2

p − tp

is the error in the final, ouput stage. The error is equal to the difference of the output signal, y2
p, and the target tp (which is

known during the training process).
In other words, the relation in (10) back-propagates the error from the FC layer 2, denoted by ∆2

p, to layer 1 and represents
a portion of the overall error (observed at the outputs, S, of the FC layer) attributed to a neuron k of the convolutional layer 1,
that is, ∆1

k(m). In this way, we can calculate all elements, ∂L/∂y1
k(m) = ∆1

k(m), of the gradient in the weight update in (8).
The bias terms are updated in the same way as the weights, that is, based on

b1
k,new = b1

k,old − α
∂L
∂b1

k
|b1

k=b1
k,old

(11)

and
∂L
∂b1

k
= ∑

n

∂L
∂y1

k(n)
∂y1

k(n)
∂b1

k
= ∑

n

∂L
∂y1

k(n)
= ∑

n
∆1

k(n) (12)

Weight updates under max-pooling. If the max-pooling operation is employed at the first convolutional layer of a CNN, then
the output y1

k(n) is produced only for some n ∈Mk, where Mk is a set of indices of nonzero values in the matrix defined by
(P-10). Then, the gradient update is adjusted accordingly, to yield

∂L
∂w1

k(m)
= ∑

n∈Mk

∂L
∂y1

k(n)
∂y1

k(n)
∂w1

k(m)
= ∑

n∈Mk

∂L
∂y1

k(n)
x(n + m). (13)

Notice that with the max-pooling in place, the convolution values used at n ∈Mk may change at each update step. If the
stride is also used, then the values of yk(n) are calculated according to a defined stride step. For example, with the stride value
of 2, the convolutions are calculated at yk(0), yk(2), . . . , yk(N − 2). The indicator matrices for the max-pooling, activation,
and stride operations are discussed respectively in Examples P-5, P-3, and P-4.

Fully connected (FC) layer. The input to the FC layer represents the flattened output from the convolutional layer, given by

o1
F
(
(k− 1)(N −M + 1) + m

)
= o1

k(n).

Without max-pooling, the indices n in o1
F(n) range from 0 to K(N −M + 1)− 1. Notice that the relation which connects the

1Here, we have also used the property of an implicit function derivative, given by

∂F(u(x,y,z),v(x,y,z),w(x,y,z))
∂x

=
∂F(u(x,y,z),v(x,y,z),w(x,y,z))

∂u
∂u
∂x

+
∂F(u(x,y,z),v(x,y,z),w(x,y,z))

∂v
∂v
∂x

+
∂F(u(x,y,z),v(x,y,z),w(x,y,z))

∂w
∂w
∂x

.
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outputs of the convolutional layer and the outputs of the FC layer in (6) can be equally written as

y2
k =

K(N−M+1)−1

∑
n=0

w2
k(n)o

1
F(n).

It is now obvious that the update of the weights in the fully connected layer, w2
k(n), can be performed in the same way as

that for the convolutional layer, based on

w2
k(m)new = w2

k(m)old − α
∂L

∂w2
k(m) |w

2
k(m)=w2

k(m)old
, (14)

whereby the gradient elements have the form

∂L
∂w2

k(m)
=

∂L
∂y2

k

∂y2
k

∂w2
k(m)

= (y2
k − tk)o1

F(m).

Observe that this relation is a special case of (13), for the CNN with y2
k(n) = y2

k(0) = y2
k , that is, when the summation over n

in (13) reduces to one term only for n = 0, that is, when a convolutional layer reduces to a fully connected layer, as elaborated
in Example 1.

If a nonlinear activation function is used at the output, then the factor of f ′(y2
k) should multiply the right hand side of

∂L/∂w2
k(m), which is a constant of unity in the case of the ReLU activation.

3) SoftMax output layer: Some applications require that the output layer gives the probabilities for the decision when
classifying the analyzed data. In other words, the output should represent the probabilities of presence of a certain class (for
example, dog, cat, bird) in the input, whereby the label that receives the highest probability represents the overall classification
decision. Since the output signals of a CNN are mapped to the range [0,1], the values of the target signal also need to be
modified to match the output range. Therefore, in the training process, the target (teaching signal) for an output yk assumes the
value tk = 1 when a correct class is detected (as during training we know the signal/image that is being analyzed by a CNN)
and tk = 0 for the incorrect decision by a given output neuron.

Since the output, yL
k , from the last fully connected L-th layer (overall output), may assume various positive or negative real

values, the output yL
k needs to be mapped onto probability-like range of values. This can be achieved using a function of the

form

Pk =
eyL

k

∑S
i=1 eyL

i
. (15)

called the SoftMax nonlinearity, whereby 0≤ Pk ≤ 1 and ∑S
k=1 Pk = 1.

With SoftMax as the output mapping, the loss function needs to be modified accordingly, from the mean square error to the
cross-entropy form, given by

L = −
S

∑
k=1

tk ln(Pk).

Observe that, as desired, the cross-entropy is very large if there is a tk close to 1 but the corresponding output probability Pk is
small, which implies that a big change in the weights should be performed. Conversely, the cross-entropy, L, is small only
when tk0 = 1 at a specific k0 and the value of corresponding Pk0 is close to 1.

The delta error function for the cross-entropy loss function in the output layer can be straightforwardly shown to be of the
form

∆L
k =

∂L
∂yL

k
=

S

∑
i=1

∂L
∂Pi

∂Pi

∂yL
k
=

S

∑
i=1

( ti
Pi

PiPk

)
− tk

Pk
Pk = Pk − tk

since from (15) it follows that ∂Pi/∂yL
k =−PiPk if i 6= k and ∂Pi/∂yL

k = Pi(1− Pk) =−PiPk + Pk if i = k, while ∑S
i=1 ti = 1.

Therefore, as desired, there is no weight update if the correct decision, tk = Pk, is produced by the CNN, while all the
previous (and the following) relations regarding the back-propagation also hold for the cross-entropy loss.

4) Back–Propagation in a Multi–Layer CNN: We shall now generalize the above illustration of the operation of the back-
propagation algorithm over a simple two-layer network to a general multi-layer CNN. Using the same indexing scheme as
above, the output of the layer l, l = 1,2, . . . , L, of a general CNN without max-pooling, is defined as

yl
k = ∑

p
ol−1

p ∗c wl
k,p + bl

k, (16)

where ol−1 is the output of the layer (l − 1), as shown in Fig. P-6. The element-wise form of this output is given by

yl
k(n) =

K

∑
p=1

M−1

∑
m=0

(
ol−1

p (n + m)wl
k,p(m)

)
+ bl

k. (17)
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Notice that, with this notation, the overall input to CNN (layer 0) is the input signal, o0 = x. For any other layer we have

ol−1 = f (y(l−1)
k ),

where f (x) is a nonlinear activation function (commonly ReLU in CNNs).
The derivatives in (17) that will be used in the update of neural network weights are calculated as follows

∂yl
k(n)

∂wl
k,p(m)

= o(l−1)
p (n + m)

∂yl+1
k (n− µ)

∂ol
q(n)

=
∂

∂ol
q(n)

( K

∑
p=1

M−1

∑
m=0

(
ol

p(n− µ + m)wl+1
k,p (m)

)
+ bl+1

k

)
= wl+1

k,q (µ)

∂ol
p(n)

∂yl
k(n)

= f ′(yl
k(n)) = u(yl

k(n)),

where u(·) is the unit step function, that is, the derivative of the ReLU activation.

Gradients of weight update. The weights in a CNN are updated according to the gradient descent direction of the loss
function, L, that is, based on

wl
k,p(m)new = wl

k,p(m)old − α
∂L

∂wl
k,p(m) |w

l
k,p(m)=wl

k,p(m)
old

. (18)

• For the convolutional layer, using the above stated derivatives, the derivative of the cost function with respect to wl
k,p(m),

become

∂L
∂wl

k,p(m)
= ∑

n

∂L
∂yl

k(n)
∂yl

k(n)
∂wl

k,p(m)
= ∑

n

∂L
∂yl

k(n)
o(l−1)

p (n + m) =
∂L

∂yl
k(m)

∗c o(l−1)
p (m).

Remark 2: Observe that, similarly to the case of MSE type of cost function addressed in Remark 1, the backpropagation
information flow for the cross-entropy cost function also assumes the form of a matched filter.

• For the standard, fully connected layer, according to (3), the following holds

∂L
∂wl

k(m)
=

∂L
∂yl

k(0)

∂yl
k(0)

∂wl
k(m)

=
∂L
∂yl

k

∂yl
k

∂wl
k(m)

=
∂L
∂yl

k
o(l−1)

k (m).

5) Delta error back-propagation: Recall that in the CNN parlance, the derivative ∂L/∂yl
k(m) = ∆l

k(m) is called the delta
error. The parameters in an arbitrary (hidden) layer l, should be therefore related to the error function in the last (output) layer,
∆L

k = Pk − tk. By using the composition of derivatives, we can relate the delta error in the l-th layer with that in the next,
(l + 1)-th, layer, and then propagate this relation iteratively to the output layer. This can be written as

∆l
k(n) =

∂L
∂yl

k(n)
= ∑

m
∑
p

∂L
∂yl+1

p (n−m)

∂yl+1
p (n−m)

∂yl
k(n)

= ∑
m

∑
p

∂L
∂yl+1

p (n−m)

∂yl+1
p (n−m)

∂ol
k(n)

∂ol
k(n)

∂yl
k(n)

= ∑
m

∑
p

∂L
∂yl+1

p (n−m)
wl+1

p,k (m) u(yl
k(n)).

This equation relates the delta error at the layer l, given by ∆l
k(n) =

∂L
∂yl

k(n)
with the delta error of the next layer, l + 1,

denoted by ∂L
∂yl+1

p (n)
. This relation will be next rewritten to form the back-propagation relation.

Back-propagation of the delta error. From the above, the recursive back-propagation relation for the delta error calculation
in the convolutional layer is given by

∆l
k(n) = u(yl

k(n))∑
p

(
∑
m

∂L
∂yl+1

p (n−m)
wl+1

p,k (m)
)
= u(yl

k(n))∑
p

(
∆l+1

p (n) ∗ wl+1
k,p (n)

)
. (19)

In order to start the recursion (back-propagation) for the update of all weights within a CNN, we must first calculate the
delta error in the last layer, denoted by ∆L

k , as this is the only directly observable error. We have seen that if the mean square
error is used as a cost function, then

∆L
k =

∂L
∂yL

k
=

1
∂yL

k

(1
2 ∑

p
(yL

p − tp)
2
)
= yL

k − tk,
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In the same spirit, for the SoftMax output layer we have

∆L
k = Pk − tk

so that we can easily calculate ∆L−1
k (n) using (19) and ∆L

k , and so on.
The above back-propagation of the delta error has been derived for the convolutional layers. For a fully connected layer, as

in standard neural networks, we can obtain the corresponding back-propagation rule by rewriting the above relation for the
convolutional layer while omitting the convolution operation, as indicated in Fig. P-4 and Example 1. In this way

∆l
k =

∂L
∂yl

k
= ∑

p

∂L
∂yl+1

p

∂yl+1
p

∂yl
k

= ∑
p

∂L
∂yl+1

p

∂yl+1
p

∂ol(k)
∂ol(k)

∂yl
k

= ∑
p

∆l+1
p wl+1

p (k) u(yl
k).

Bias update. The back-propagation of the bias terms obeys similar rules as for the ordinary weights, and is given by

∂L
∂bl

k
= ∑

n

∂L
∂yl

k(n)
∂yl

k(n)
∂bl

k
= ∑

n

∂L
∂yl

k(n)
= ∑

n
∆l

k(n),

with
bl

k,new = bl
k,old − α

∂L
∂bl

k
|bl

k=bl
k,old

(20)

For the FC layers, the bias update is performed according to

∂L
∂bl

k
=

∂L
∂yl

k

∂yl
k

∂bl
k
=

∂L
∂yl

k
= ∆l

k,

with the same update relation as in (20).
The entirety of the backpropagation algorithm for the update of the weights in CNNs is numerically illustrated in Example 2
on the next page.

IV. NEURON DROPOUT

Dropout for regularizing deep neural networks. Neural networks are known to perform universal function approximation [7],
however, fully connected deep neural networks tend to quickly overfit small-scale training datasets owing to the inappropriately
large number of network parameters (weights). In CNNs, this problem of the explosion in parameter dimensionality with the
increase in the number of hidden layers is mitigated to an extent through convolutional layers, and the max-pooling or output
down-sampling (stride) strategies.

Another way of reducing parameter complexity in fully connected DNNs is by breaking correlations between neuron
parameters (also known as co-adaptation) through regularization. This can be achieved by randomly dropping out neurons and
the associated weights from a given DNN architecture, whereby with every neuron we associate a probability, P, of its removal.
The dropout operation is typically performed over many independent realisations and yields smaller-scale and better manageable
subnetworks, which owing to their random generation all have different architectures. Then, the training is performed in parallel
over these subnetworks, whereby the effect of neuron dropout is that weight updates within a given subnetwork are performed
with a different “view” of the overall DNN architecture, compared with other subnetworks. The subnetwork weights trained in
this way are then recombined into those of the full DNN by averaging over the number of their random realisations. In this
sense, neuron dropout represents a kind of a sparsification at a given layer and thus provides more robust training especially
for small-scale inputs. When it comes to CNNs, the above described dropout can be used within the FC layers, wheareas
the convolutional layers employ a specific form called spatial dropout whereby the entire convolutional kernels (features) are
dropped, together with the corresponding weights connecting these kernels to the preceding and subsequent layers. Dropout can
be interpreted as a process regularizing a NN by artificially corrupting the training process with “system noise” (cf. artificially
corrupting features in CNNs) in order to stabilize the predictions (test stage), as elaborated in [8].
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Example 2. This example complements Example P-9 by providing, in a step-by-step manner, all the numerical values related to the
operation of the two-layer CNN network with one convolutional layer and one fully connected layer, considered in Example P-9. The
input signal had N = 8 samples, and contained a noisy version of one of the two characteristic patterns (features): (i) a variant of the
triangular shape pattern, feature1 = [−0.5, 1, −0.5] + ν(n), for which the target output (class) is t = [1, 0]T or (ii) a variant
of a rectangular three-sample feature2 = [1, 1, 1] + ν(n), for which the target output (class) is t = [0, 1]T , where ν(n) denotes
random uniformly distributed noise whose values lie in the region [0,0.3]. These noisy signals were further corrupted by additive white
Gaussian noise with the standard deviation of 0.05, and then normalized to unit energy, as shown in Fig. P-8(a). Convolution filters of
M = 3 samples were used within K = 3 channels at the convolutional layer. The SoftMax function was used at the output of the FC
layer, with two outputs that correspond to the two patterns in the target signal, t, and the corresponding target signals, t, as described
above. The network was trained using 200 random realizations of the input, x, which were presented 10 times to the network, that is,
the training was performed over 10 epochs of 200 random signal realizations. After the training, the network was tested over 100 new
random signal realizations, which were not seen by the network during the training stage.

The detailed elaboration and quantification of all the steps which yield the results given in Fig. P-8 are as follows.

Forward calculation: From the input signal to the output of the fully connected layer
• Input signal, x, of length N = 8, x = [−0.18 −0.28 −0.23 −0.32 0.45 0.45 0.45 −0.35]T .
The target signal was t = [1, 0]T , since only f eature2 was present in the input.

• Weight initialization: Random w1
k(m) ∼N (0,1)

√
2/3, M = 3, for K = 3 channels, which gives

w1
1 = [−0.07 −0.01 −1.47]T ,

w1
2 = [ 0.44 0.14 −0.30]T ,

w1
3 = [ 1.15 −1.01 −1.83]T .
• Convolutions: yk = x ∗c w1

k + bk, k = 1,2,3 with the initial bias values b1 = 0, b2 = 0, and b3 = 0, to yield
y1 = [ 0.35 0.49 −0.65 −0.65 −0.69 0.48]T ,
y2 = [−0.05 −0.06 −0.28 −0.21 0.13 0.37]T ,
y3 = [ 0.48 0.50 −0.77 −1.66 −0.76 0.71]T .
•Nonlinear activation function: ReLU activation function, Fk = f (y1

k) = max{0,y1
k}, was used, to give

f (y1) = [0.35 0.49 0.00 0.00 0.00 0.48]T ,
f (y2) = [0.00 0.00 0.00 0.00 0.13 0.37]T ,
f (y3) = [0.48 0.50 0.00 0.00 0.00 0.71]T .
• Max-pooling: With P = 3, the max-pooling output o1

k(m) = max{Fk(mP), . . . , Fk(mP + P− 1)}, becomes

o1 =

max{0.35 0.49 0.00} max{0.00 0.00 0.48}
max{0.00 0.00 0.00} max{0.00 0.13 0.37}
max{0.48 0.50 0.00} max{0.00 0.00 0.71}

T

=

0.49 0.48
0.00 0.37
0.50 0.71

T

.

From Example P-3 and Example P-5, the indicator matrices of the values selected by ReLU, MReLU , and max-pooling, MMP, are

MReLU =

1 1 0 0 0 1
0 0 0 0 1 1
1 1 0 0 0 1

T

and MMP =

 0 1 0 0 0 1
1 0 0 0 0 1
0 1 0 0 0 1

T

,

and will be used to reposition the gradient update calculated with the downsampled, o1, to the proper, y1, positions,
thus taking into account the positions of the output which survived zeroing by the ReLU and the max-pooling.
• Flattening: NF = (N −M + 1)P = 2, o1

F((k− 1)NF + m) = o1
k(m), k = 1,2,3, m = 0,1, so that

o1
F = [0.49 0.48 0.00 0.37 0.50 0.71]T .
• Weight initialization: For the FC layer, we chose random w2

k(n) ∼N (0,1)
√

2/6, to give

w2 =

[
−0.47 −0.06 −0.05 −0.81 0.62 −0.18

0.02 0.12 −0.15 −0.07 −0.87 −0.53

]T
,

• Output: From the above, the two outputs of the FC layer, y2
k = ∑5

n=0 o1
F(n)w

2
k(n), have the value

y2 = (w2)To1
F = [−0.38 −0.77]T .

• SoftMax: With S = 2, Pk = ey2
k /(ey2

1 + ey2
2 ), k = 1,2, we have

P = [0.60 0.40]T , ∆2 = P− t = [−0.40 0.40]T , ∆2
k = Pk − tk.
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Based on the above set-up, the training stage was performed through back-propagation, with the signal values at the different stages
of the process as follows.

Back-propagation: Delta error, gradient, weight update

• Gradient in the FC layer, g2
k(m) = ∆2

ko1
F(m), was calculated as

g2 = o1
F(∆

2)T =

[
−0.12 −0.12 −0.00 −0.09 −0.12 −0.17

0.12 0.12 0.00 0.09 0.12 0.17

]T
.

• Weight update in the FC layer, w2
k(m)← w2

k(m) + 0.1g2
k(m), then takes the values

w2 = w2 − 0.1g2 =

[
−0.45 −0.04 −0.05 −0.79 0.64 −0.15

0.00 0.10 −0.15 −0.08 −0.89 −0.56

]T
.

• Delta error back-propagation in the convolutional layer, ∆1
k(m) = ∑p ∆2

pw2
p(m),

(∆2)Tw2 = [0.18, 0.06, -0.04, 0.29, −0.62, −0.16], now follows as

Repositioned {(∆2)Tw2}=

 0.18 0.06
−0.04 0.29
−0.62 −016

, following o1
F→ o1.

• Repositioning the elements of ∆1
k = (∆2)Tw2 at the positions defined by MMP

k �MReLU
k is based on the indicator matrices

for the ReLU and max-pooling operations, as in From Example P-3 and Example P-5, to yield
∆1

1 = [0 0.18 0 0 0 0.06]T ,
∆1

2 = [0 0 0 0 0 0.29]T

∆1
3 = [0−0.62 0 0 0 −0.16]T

where � is the Hadamard element-by-element product.
• Gradient in the convolutional layer, g1

k(m) = ∆1
k(m) ∗c x(m), now takes values g1

k = ∆1
k ∗c x, given by

g1
1 = [−0.03 0.03 0.06]T ,

g1
2 = [ 0.01 0.20 0.12]T ,

g1
3 = [ 0.06 −0.02 0.06]T .
• Weight update in the convolutional layer w1

k(m)← w1
k(m)− 0.1gk(m), produces the weights

w1
1 = [−0.06 −0.01 −1.47]T ,

w2
1 = [ 0.45 0.13 −0.31]T ,

w3
1 = [ 1.12 −1.01 −1.84]T .
• Bias update, bk← bk − 0.05∑n ∆1

k(n), follows similarly to the weight update
b← b− 0.05([1 1 1 1 1 1]∆1)T = 0− 0.05 [0.24 0.29 −0.78]T .
• New iteration of the backpropagation algorithm starts with the new signal for which the target was, t = [0, 1]T , which is given by
x = [−0.10 −0.12 −0.05 −0.24 0.89 −0.35 −0.02 −0.00]T ,
With the new (updated) weights, w1 and w2, and bias b, go back to the first step and continue the recursion.

After the first training cycle is completed, the process is repeated with a new noisy input signal, x as in Fig. P-8(a), randomly assuming the
presence of either feature1 or feature2 at a random position within the signal. The results of the training and testing process are
visualized in detail in Fig. P-8.

V. PRINCIPLE OF THE MATCHED FILTERING INTERPRETATION OF CNNS FOR IMAGES

Based on the above introduced perspective on the matched filtering interpretation of the operation of CNNs for temporal
signals, we next provide an intuition for the extension of this approach to CNNs for images. Such an extension is non-trivial,
as both the cross-correlation and convolution for images exhibit intricacies which are not present in 1D signals; this is therefore
out of scope of the present work. For intuition, we here provide a visualisation which confirms the validity of the matched
filtering interpretation of image CNNs. The full analysis is a subject of our ongoing work, with some initial insights available
from [9].

Consider a CNN architecture for the recognition of handwritten digits from the MNIST database, given in Figure 3. The
CNN aims at classifying the handwritten digit into ten categories, {0,1, . . . ,9}. Some examples of the handwritten digit “zero”
from the MNIST database are given in Figure 4.

To illuminate the generality and potential of the above introduced matched filtering perspective for signals, we next examined
the feasibility of the matched filtering interpretation for image-CNNs, akin to that for temporal signals presented above. To this
end, we employed 10 convolutional kernels (one per the handwritten digit) of the same sizes as the original MNIST images of
handwritten digits, that is 20× 20 pixels. Such kernels were randomly initialised and trained by backpropagation. The results in
Fig. 5 confirm that not only the trained convolutional kernels adopted the shapes of the corresponding digit classes – precisely
the matched filtering operation in the same way shown above for temporal signals – but also this domain knowledge aware
architecture achieved high accuracy of 89 % while employing only one convolutional layer and one output layer. Full analysis
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Fig. 3. A single-layer CNN architecture for the recognition of handwriten digits. The images are of size 20× 20 pixels.

Fig. 4. Exemplar handwritten digits “0” from the MNIST database.

Fig. 5. Convolution kernels for the classification of MNIST handwritten digits, after training from a random initialisation. Observe the validity of the proposed
matched filtering perspective, as the learned kernels adopted the shapes of the ten considered digit classes.

and applications of such an approach, together with a matched filtering perspective of multi-task learning, is subject of our
ongoing work. Some initial results and intuition along this research direction can be found in [9].
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