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Abstract—In this paper, the reconstruction of non-stationary
audio signals is considered. Audio signals are approximately
sparse in the joint time-frequency representation domain. The
reconstruction is based on a reduced set of samples, and it is
considered that the signals are sparse. The short-time Fourier
transform (STFT) is considered as the representation domain
where the audio signals are sparse. The formula for error caused
by the reconstruction of approximately sparse signals under
the sparsity assumption is derived. The results are numerically
illustrated on three audio signals.
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I. INTRODUCTION

A non-stationary signal, that covers most of the time and
frequency domain, may be well localised in the joint time-
frequency domain. If time and frequency are considered sepa-
rately, these signals are dense in both domains. An example of
a non-stationary signal is the audio signal. The audio signals
could be located within much smaller regions in the time-
frequency domain using appropriate time-frequency represen-
tations [1–6]. The most basic time-frequency representation is
the short-time Fourier transform (STFT). If only few coeffi-
cients in time-frequency domain are nonzero, compared to the
total number of coefficients, then the signal is sparse in this
transformation domain.

By compressive sensing (CS) theory, a signal that is sparse
in a certain domain can be reconstructed with a reduced set
measurements (signal samples) than required by the standard
sampling theorem [7–11]. Reducing the number of available
samples in the analysis manifests as a noise, whose properties
in the DFT are studied in [12]. These results will be used to
define noise properties in the STFT of audio signals considered
here. The results presented here are based on the noise analysis
in the two-dimensional DFT done in [13]. Let us consider
the case when a nonsparse signal is reconstructed with a
reduced set of available samples. Then the non-reconstructed
components will behave as the noise related to the number
of the missing samples. It will be treated as an additive input
noise in the reconstructed signal. The relation for the mean
square error is derived for the case of the STFT matrix.
The main result is the error in reconstructed signal related
to the energy of non-reconstructed components, the number
of missing samples, and signal sparsity. The results are tested

on audio signals, as one of the most common applications of
the STFT representation.

The paper is organised as follows. The theoretical back-
ground of compressive sensing and time-frequency signal
analysis is shown in Section II. The formula for the influence
of nonsparsity on the reconstructed signal is presented in
Section III. The numerical results are given in Section IV.

II. THEORETICAL BACKGROUND

Consider a general form of a multicomponent signal

x(n) =

C∑
l=1

xl(n), (1)

with C non-stationary components xl(n), l = 1, 2, . . . , C. We
will assume that the signal is sparse in the STFT domain. The
STFT of the discrete-time signal is defined as

SN (n, k) =

N/2−1∑
m=−N/2

x(n+m)w(m)e−j
2π
N mk, (2)

at instant n and frequency k. The window function of length
N is w(m). The windowed signal x(n,m) = x(n+m)w(m),
which is K-sparse in the STFT domain, can be written as

x(n,m) =

K∑
i=1

Ai(n)e
j2πmki/N (3)

The signal and its STFT can be represented in the matrix form

SN (n) = WNHNx(n) (4)

HNx(n) = W−1
N SN (n), (5)

where x(n) is the vector of the original signal within the
window, WN is the DFT matrix of size N × N with coef-
ficients W (m, k) = e(−j2πkm/N) and HN is the matrix with
the window values at its diagonal. With suitable overlapping,
the analysis and reconstruction of the whole signal based on
STFT is straightforward [1], [2], [14].

With the assumption that the signal is sparse in the STFT
domain, we can reconstruct it with a reduced number of
samples, according to the compressive sensing theory [7],
[8]. The number of randomly positioned available samples for
the reconstruction is NA � N . For a given n the available



signal samples are at the positions n + m ∈ NA, where
NA = {n+m1, n+m2, ..., n+mNA}.

The number of unavailable/missing samples is NM = N −
NA. The available samples of the windowed signal are

yn = [x(n+m1)w(m1), ..., x(n+mNA)w(mNA)]
T . (6)

Note that
yn = ASN (n),

where A is the partial inverse DFT matrix which corresponds
to the positions of the available samples.

The goal of compressive sensing is reconstructing the miss-
ing samples of the original sparse signal from the available
samples. A general compressive sensing formulation is

min ‖SN (n)‖0 subject to yn = ASN (n).

In this paper we will assume that the initial STFT is calculated
using the available samples only

SN0(n, k) =

NA∑
i=1

x(n+mi)w(mi)e
−j 2π

N mik (7)

SN0(n) = NAHyn. (8)

The mean and the variance of this STFT, i.e. calculated
using the available signal samples only, at a given instant n,
are [12]

E{SN0(n, k)} =
K∑
i=1

NAAi(n)δ(k − ki) (9)

var{SN0(n, k)} = NA
NM
N − 1

K∑
i=1

|Ai(n)|2 (1− δ(k − ki)) ,

(10)

where δ(k) = 1 only for k = 0 and δ(k) = 0, elsewhere.
In general, time-varying signals (such as audio signals) are

not strictly sparse in the STFT domain. Because of their non-
stationarity, the signals are either approximately sparse or not
sparse. We say that a signal is K-sparse in a transforma-
tion domain if it has nonzero coefficients only at positions
k ∈ K = {k1, k2, . . . , kK} and others are zero-valued. A
signal is approximately sparse if the coefficients at k ∈ K are
significantly larger than the coefficients at k /∈ K. A signal is
said to be nonsparse if the coefficients at the positions k /∈ K
are of the same order as the coefficients at k ∈ K. To use
the theory of compressive sensing for any of these signals,
the sparsity assumption has to be made. In this paper, we will
examine the influence of the non-reconstructed coefficients on
audio signals obtained by assuming that signals are K-sparse
in the STFT domain.

The signal is reconstructed by estimating the positions of
the nonzero components and calculating the unknown signal
amplitudes Ai(n) based on the known x(n+mi). The recon-
struction is done in an iterative way [11]. In the first step, the
position of the largest component is found as

k1 = argmax{SN0(n)}.

Matrix A1 is formed from matrix A by omitting all rows
except the row corresponding to the found position k1. The
first STFT estimate is

SN1(n) = (AH
1 A1)

−1AH
1 yn.

The signal is reconstructed and subtracted from the original
signal at that position. The STFT estimate is calculated again
with this new signal and its maximum position is at k2. A new
set of positions of available samples K = {k1, k2} is formed
with the corresponding matrix A2. The new estimate SN2(n)
is calculated and the signal is reconstructed. The procedure
is repeated K times. The procedure can be presented with a
pseudo-code:

K = ∅, yr = yn

for i = 1 : K

SN0(n) = NAHyr

k = arg{max
k
|SN0(n)|}

K = {K, k}
AK = A(K, :)

SNK(n) = (A
T
KAK)−1AT

Kyn

SNK(n, k) = SNK(n, k), k ∈ K

SNK(n, k) = 0, k 6∈ K

sr = W−1
N SNK(n)

yr = yn − sr, for n ∈ NA

end
SNR(n) = WNsr

The reconstructed signal STFT is SNR(n). How the non-
sparsity influences the reconstruction process will be presented
next.

III. NONSPARSITY IN TIME-FREQUENCY ANALYSIS

The error which is produced by the reconstruction of
nonsparse signal with a sparsity constraint is calculated. We
assume that the compressive sensing conditions for the recon-
struction are satisfied.

Let consider a signal x(n) with time-varying components.
Its STFT is denoted SN (n, k). In matrix form it is SN (n). The
number of samples within a window is N . The available signal
samples are at NA random positions, defined by n + m ∈
NA. We assume that the signal is reconstructed as it were
K-sparse and that the reconstruction conditions are met for
this sparsity. The reconstructed signal with K nonzero STFT
coefficients at k ∈ K is denoted by SNR(n). The error in the
reconstructed coefficients with respect to the K corresponding
STFT coefficients if the original signal were used is:

‖SNK(n)− SNR(n)‖22 = K
NM
NAN

‖SN (n)− SNK(n)‖22 ,
(11)

where SNK is equal to the original signal STFT SN at
the reconstructed positions, SNK(n) = SN (n) for k ∈ K
and SNK(n) = 0 for k /∈ K. Note that ‖SN (n)‖22 =
E{

∑
k |SN (n, k)|2} and SNK(n) is the K-sparse version of



SN (n). The elements of vector SNK(n) are SNK(n, k) =
SN (n, k) for k ∈ K, and SNK(n, k) = 0 for k /∈ K.
The reconstructed SNR(n) is formed in the same way. The
coefficients at k ∈ K are the results from the reconstruction
procedure. The remaining coefficients are set to zero.

Since the CS conditions are satisfied, we can detect K
signal components with amplitudes Ai, i = 1 . . .K, using the
algorithm explained in Section II and perform the reconstruc-
tion. The reconstructed signal SNR(n) has K reconstructed
components. The remaining N − K signal components with
amplitudes (AK+1(n), AK+2(n), ..., AN (n)) are not recon-
structed. They produce noise in the reconstructed components.
The variance of the noise from one non-reconstructed signal
component, Eq. (10), is

|Ai(n)|2NANM/(N − 1). (12)

The scaling factor is N/NA for the reconstructed components
since the signal amplitudes in SN0(n) are proportional to
NA and we know that the amplitudes are recovered to their
original values as if all samples were available (proportional to
N ). That means that the scaling factor for the noise variance
in the reconstructed components is (N/NA)

2. Therefore, the
variance of noise caused by a non-reconstructed component to
a reconstructed component is

|Ai(n)|2
N2

N2
A

NANM
N − 1

∼= |Ai(n)|2N
NM
NA

. (13)

This analysis is valid for one component signal. For a K-
component signal, the white noise energy in the reconstructed
components will be K times larger than the variance in
one reconstructed component. Total noise caused by the non-
reconstructed components is

‖SNR(n)−SNK(n)‖22 = KN
NM
NA

N∑
i=K+1

|Ai(n)|2 . (14)

Energy corresponding to the non-reconstructed components
only, can be written as

‖SN (n)−SNK(n)‖22 =

N∑
i=K+1

|NAi(n)|2 . (15)

From (14) and (15) follows

‖SNR(n)−SNK(n)‖22 = K
NM
NAN

‖SN (n)−SNK(n)‖22 .

The cases when the original signal is exactly of sparsity K,
i.e. SN (n) = SNK(n), and when all samples are available,
i.e. N = NA, produce no error.

IV. RESULTS

The presented theory is illustrated on three audio signals.
Audio signals are usually approximately sparse or nonsparse.
The first considered audio signal is the benchmark signal from
MATLAB. The second signal is a recorded speech, while the
third one is also a benchmark signal from MATLAB with
faster varying time-frequency representation.

A. Example 1

Let us consider the audio signal ’train’. This signal is
included in the MATLAB software. The original STFT of the
signal is shown in Fig. 1(top). The STFT is calculated with
a Hann(ing) window with a half of its length overlapping.
This window and overlapping allowed very simple and direct
signal reconstruction. It is assumed that the sparsity is K = 55
and 50% of samples are missing. The STFT of the signal
with the remaining 50% of available samples is shown in
Fig. 1(middle). The reconstructed STFT is presented in Fig.
1(bottom). The total error in dB caused by the reconstruction
for various sparsity levels K is shown in Fig. 2. The theoretical
results are presented with the blue solid line and the estimated
error is shown with the red stars. Agreement between theoret-
ically obtained error energy and estimated one is very high.

B. Example 2

Now we will assume a recorded version of the words “You
and I”. This signal was recorded on a MacBook Air laptop
using MATLAB with a sampling frequency of 44.1 kHz, 16-bit
A/D conversion and single-channel mode. As in the previous
example, it is assumed that there is only a half of the samples
available. The assumed sparsity is K = 75. The original
signal, the signal with available samples and the reconstructed
one are shown in Fig. 3. The total error in dB caused by the
reconstruction for various sparsity levels K is shown in Fig.
4. As in the previous example, agreement between theory and
estimation is very high.

C. Example 3

Let us consider another built-in MATLAB audio signal
’mtlb’. The signal ’mtlb’ is the spoken word “MATLAB”.
The original STFT of the signal is shown in Fig. 5(top). It
can be seen that the time-frequency representation is varying
fast in this case. We again used a Hann(ing) window with
50% of its length overlapping. It is assumed that the sparsity
is K = 150 and 20% samples are missing. The STFT with
missing samples is shown in Fig. 5(middle). The reconstructed
STFT is presented in Fig. 5(bottom). The total error in dB for
various sparsity levels K is shown in Fig. 6. The signal in the
reconstruction is considered as sparse, although its components
cover almost the whole frequency range.

V. CONCLUSIONS

The influence of nonsparsity to the reconstruction of audio
signals that are approximately sparse in the time-frequency
domain is analysed in this paper. The relation for the re-
construction error is derived. The reconstruction results are
examined on three different examples, which include some
recorded data. The derived formula agrees with the numerical
calculations of the reconstruction error.



Original STFT

10 20 30 40 50

100

200

300

400

500

Available STFT samples

10 20 30 40 50

100

200

300

400

500

Reconstructed STFT

10 20 30 40 50

100

200

300

400

500

Fig. 1: STFT reconstruction of the audio signal ’train’: Orig-
inal STFT (top); STFT of the signal with available samples
(middle); Reconstructed STFT (bottom)
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Fig. 2: Total error energy after the reconstruction with various
sparsity levels of the audio signal ’train’. Blue line represents
theoretically obtained error and red stars represents estimation.
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Fig. 3: STFT reconstruction of the recorded audio signal “You
and I”: Original STFT (top); STFT of the signal with available
samples (middle); Reconstructed STFT (bottom)
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Fig. 4: Total error energy after the reconstruction with various
sparsity levels of the recorded audio signal “You and I”. Blue
solid line represents theory, red stars represents estimation
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Fig. 5: STFT reconstruction of the audio signal ’mtlb’: Orig-
inal STFT (top); STFT of the signal with available samples
(middle); Reconstructed STFT (bottom)
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Fig. 6: Total error energy after the reconstruction with various
sparsity levels of the audio signal ’mtlb’. Blue line represents
theoretically obtained error and red stars represents estimation.
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