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Abstract- The L-estimate transforms and time-frequency 

representations are presented within the framework of compressive 
sensing. The goal is to recover signal or local auto-correlation function 
samples corrupted by impulse noise. The signal is assumed to be sparse in 
a transform domain or in a joint-variable representation. Unlike the 
standard L-statistics approach, which suffers from degraded spectral 
characteristics due to the omission of samples, the compressive sensing in 
combination with the L-estimate permits signal reconstruction that 
closely approximates the noise free signal representation.    

 
Index Terms – robust time-frequency distributions, L-estimation signal 

reconstruction, compressive sensing 

I. INTRODUCTION 

Robust statistics have been shown to deal effectively with 
impulsive type of noise. Based on the maximum likelihood 
(ML) and Huber’s estimation theory, Katkovnik has 
introduced the robust M-Fourier transform (FT) [1], which is 
calculated using absolute error loss function and iterative 
procedure. The robust approach to the definition of signal 
representations was extended to the time-frequency (TF) 
analysis in [2]. However, the M-estimates are quite sensitive 
to a priori assumption of disturbance’s pdf, and they do not 
produce closed form solutions. Hence, other robust statistics 
approaches were introduced, such as the L- and the R-estimate 
to provide more robust representations without the need for 
iterative procedures [2]. In quadratic and higher order TF 
representations [3]-[6], which may be considered as the FTs of 
the local auto-correlation functions (LAFs), the impulse kind 
of noise may appear as a result of signal multiplications, even 
in the case of Gaussian input noise [2].  This makes robust TF 
analysis rather imperative.    

The L-estimation form is of particular importance among all 
robust forms owing to its efficiency when noise pdf is 
unknown. It can also produce the median and the standard 
signal representation forms as the special cases. In the most 
commonly used L-estimation form of signal representations, 
the -trimmed form, some values of product between the 
signal and basis functions are discarded. In quadratic and 
higher order analysis, the L-estimation forms are applied to 
the LAFs. However, an incomplete set of samples produces an 
effect similar to noise. It is shown analytically in this paper 
that such noise may have a significant variance which strongly 
depends on the number of omitted samples. In order to 
improve the quality of representation, the missing samples of 
signal or LAF should be properly reconstructed. This problem 
of recovering random samples is under-determined and thus 
amenable to CS application [7], [8]. It is noteworthy that this 
could be, in some way, related to the requirements present in 
image filtering [9], [10], where the noisy pixels are 

reconstructed by using other available pixels and specialized 
regularization methods.  

Compressive sensing (CS) is a new approach for signal 
acquisition and compression which has found several 
applications using different sensing modalities [11]-[14]. In 
CS, the signal, which is sparse in certain transform domain, 
can be reconstructed from a small set of measurements by 
using convex optimization algorithms. This reduction can be 
due to difficulty of achieving high sampling rates or obtaining 
high quality of the samples. In the latter, the signal samples 
are all available, but some must be discarded due to high noise 
levels or strong interference contaminations. This is the case 
considered in this paper, where impulsive noise can occur 
either as additive component to the original signal or can arise 
later within the LAF in the case of quadratic or higher order 
TF distributions. Impulse noise in CS applications has been 
treated using myriad projections and the Lorentzian norm, to 
improve results over the standard Basis Pursuit (BP) method 
[15]. However, as stated therein, the Lorentzian norm 
optimization requires complex parameter selection and 
exhaustive search procedures, while myriad projections are 
computationally demanding compared to linear projections 
[15]. An approximate solution [16] is to combine l0 least 
absolute deviation regression model with the weighted median 
regression. Again, it requires many computations, with 
parameter selections obtained by trial and error. The aim of 
this letter is to improve the L-estimation using the CS theory. 
The data samples affected by impulsive noise, and thus 
discarded by the L-estimation, can be recovered by employing 
l1 sparse reconstruction techniques (e.g. based on standard 
BP). This method is adopted for the L-estimate forms of both 
the short-time FT and the Wigner distribution (WD), leading 
to significant enhancement of their performance compared to 
the standard L-estimation only approach.   

II. THEORETICAL BACKGROUND 

A. Robust L-estimate transforms and TF representations 
 

 Consider a noisy signal x(n)=s(n)+v(n), where v(n) is a 
complex-valued noise. An efficient frequency analysis 
depends on noise pdf. A solution robust to pdf variations is 
based on L-statistics. The L-estimate FT can be written as: 
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performed with respect to either absolute values or real and 
imaginary parts independently (into non-decreasing order). In 
the case of impulse noise, the L-estimate can be used, such 
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that 2 ( 2)M  highest values are omitted, while the mean is 

calculated over the rest of the values, with the coefficients: 
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where M is even, whereas  takes values within the range [0, 
1/2]. If (1 2 ) 4M     is not an integer, then the nearest 

integer is used. Similar form is used when M is odd. Higher 
value of  provides better reduction of impulse noise, but 
reduces number of available samples for analysis. The proper 
value of  should be chosen according to the expected amount 
of samples with significant noise. Hence, if Q% of samples is 
assumed to be heavily corrupted by noise, then  should be 
chosen such that ( (1 2 ) 4 )/ 1 /100M M Q     . Details about 

 (or Q) selection and its adaptive form may be found in [2]. 
One approach starts with median form of signal transform, as 
a special case of the L-estimate, and iteratively increases the 
number of samples, thus improving representation. The 
influence of Q will be further discussed in Section IV. 
 Following the L-estimate form of the FT, the L-estimate 
STFT is defined as [2]: 
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Similarly, the L-estimate robust WD can be written as: 
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Here, the sorting and  trimming procedure is applied to the 
LAF. Quite similar procedure can be applied to other higher 
order TF representations. Boldface letters in the above 
equations denote corresponding vectors. 

III. COMPRESSIVE SENSING BASED L-ESTIMATION  

A. Statistical Analysis of Missing Samples Influence 

 
In order to analyze the impact of samples removal using the 

L-estimation process, consider the standard FT of the non-
noisy sinusoidal signal 0exp( 2 / )j k m M : 
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which reduces to delta function for integer k0. If we remove 
arbitrary positioned terms, the resulting FT XL(k) would have 
random properties. Consider, for example, a certain 
percentage Q of the total number of terms in (5) has been 
removed (MQ samples) so N=M-MQ= (1 2 ) 4M     terms 

remain in (5). Then, depending on the value of k, two cases 
may arise.  
Case 1: k=k0 corresponds to the frequency of signal. At this 
frequency all terms within the sum are the same and equal to 
1. Thus, the value of XL(k0) does not depend on the positions 
of the removed samples and it is given by: 

 0( ) ( )L QX k M M  . (6) 

Case 2: k=l+k0, l0. The removed samples in (5) assume 
values from set  ( ) exp( 2 / ), 0,1,..., 1lx m j ml M m M    , 

with equal probability, for a given frequency 0l k k  . The 

removal of samples in L-statistics can be modeled with a new 
additive noise terms ( ) ( )L lm x m  in (5). Statistical mean of 

these values (with respect to m) is E{xl (m)}=0 for l0, leading 
to E{XL(l+k0)}=0. The resulting statistical mean for any k is: 
   0( ) ( ) ( )L QE X k M M k k   . (7) 

The variance of the random variable taking values from the set 
 is var{xl (m)}=1. The reconstructed values XL(k0+l), l0, 
will be zero-mean random variables. Taking into account that 
variables in   are not independent (since their complete sum 
over all M samples is zero), the variance of XL(k0 + l) is: 
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The DFT behaves as if the signal was noisy with resulting 
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with probability of 0.95. Here, we assumed that large number 
of terms is removed. Thus, according to the central limit 
theorem the sum behaves as Gaussian random variable (its 
real and imaginary part, while the absolute value is Rayleigh 
distributed). As an example, consider M-MQ=M/8 and M=128. 
Then |XL(k)/XL(k0)|<0.41 with probability 0.95, meaning that 
5% values of XL(k) are above 0.41XL(k0) due to this source of 
error. Having in mind the DFT linearity, this error analysis 
can be easily generalized to a sum of K sinusoidal signals. 
 

B. CS based robust transforms and TF representations 
 

In order to improve spectral characteristics in the case of 
robust L-estimate representations, we should recover the 
missing samples. For a small number of missing samples, we 
can perform a direct search within the range of the remaining 
values (e.g. from -1 to 1 with step 0.1 and over all phase 
values from 0 to 2). The reconstructed values are estimated 
as the ones producing the best concentration in the transform 
domain, [4]. The direct search method, however, becomes 
computationally exhaustive and practically inapplicable when 
a high number of samples is missing. Alternatively, CS can be 
used to retrieve the missing samples and reconstruct the 
signal. Generally, the CS theory states that a signal with M 
samples can be reconstructed from its N randomly chosen 
samples (N<M), if the signal satisfies certain conditions, such 
as sparsity, when represented in a basis  [8],[17].  
 If we simply use a set of random observations from the 
noisy signal to perform CS reconstruction, this set will 
include, with a certain probability, at least some strong noisy 
peaks, which are sufficient to produce spreading in the FT 
domain. Hence, to provide an appropriate observation set, we 
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use the L-estimate form given by (1) to obtain L-statistics 
based version of original signal x: 
  ( ( )), [0, (1 2 ) 4 1]x p i for i M      x , (10) 

  2 /arg ( ) , 0,..., 1j mk Msort x m e m M  p . 

Vector p contains the original positions of samples before the 
sorting operation. In the context of CS, the signal x, with 
N=M-MQ samples, represents a measurements vector. It can 
be written using the measurement matrix: 
  x Φx , (11) 

where  (NxM) selects samples from x according to the 
positions that remains after L-estimation. In other words, it 
contains only one value “1” per row on the positions defined 
by the L-estimation approach. Furthermore, the signal x can 
be represented as a linear combination of the orthonormal 
basis vectors as: 
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If the number of nonzero transform coefficients in X is K<<M, 
which is the case of sinusoids and Fourier basis then we can 
say that x is K sparse. Accordingly, we may write: 
   x ΦΨX AX . (13) 

The reconstructed signal xr can be obtained as a solution of 
N linear equations with M unknowns. Having in mind that this 
system is undetermined and can have infinitely many 
solutions, optimization based mathematical algorithms should 
be employed to search for the sparsest solution, consistent 
with the linear measurements. A near optimal solution is 
achieved by using the 1l  norm based minimization as follows:  
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where Xr is the DFT vector of reconstructed signal xr. The 1l  

norm is convex, and linear programming can be used. In 
addition to the CS based L-estimate FT Xr we may define the 
CS based L-estimate TF representations. Hence, the STFT can 
be defined by applying the CS reconstruction to the signal: 
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where xr(n+m) is the recovered windowed signal. Similarly, 
the CS based WD can be defined as follows: 
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where xr* denotes the complex conjugate of xr, while the CS 
reconstruction is applied to the samples of the LAF 

*( , ) ( ) ( )r r rR n m x n m x n m   . For the sake of simplicity, a 

rectangular window is assumed in previous relations. In the 
WD or higher order distributions, the resulting noise in LAF is 
impulsive in nature even for Gaussian input noise, [2]. Thus, 
the presented approach could be used to significantly improve 
these representations.  

IV. EXAMPLES 

Example 1: Consider a discrete noisy signal: 

 01 022 / 2 /( ) ( )j k n M j k n Mx n e e n      (17) 

where M=64, k01=8, k02=52, and (n) is impulse noise that 
significantly affects up to 35% of data samples (22 samples). 
According to the L-statistics 24 values are omitted out of 64. 
As will be shown, up to about 70% of omitted values will not 
significantly change the signal reconstruction performance. 
The STFT is illustrated for a single time instant (FT of one 
windowed signal part). The standard STFT of non-noisy and 
noisy signal are shown in Fig. 1.a and b, respectively. The L-
estimate approach is given in Fig. 1.c. For comparison, the 
result of 1l  based robust processing for impulse noise 

reduction [1],[2],[14], is shown in Fig. 1.d. This result is close 
to the L-statistics based one, since it is a known efficient tool 
belonging to the M-estimate-based robust signal analysis. The 
proposed approach is given in Fig 1.e., which depicts almost 
the same performance as the original signal transform.  

 
 

Fig 1. a) STFT of non-noisy signal, b) STFT of noisy signal, c) L-estimate 
STFT, d) robust l1-norm based reconstruction, e) CS L-estimate STFT 

 

The CS reconstruction in the proposed approach is performed 
using the BP primal-dual interior point method (Matlab 
toolbox l1-magic is adapted and used for this purpose).  

Example 2: In order to test the proposed approach in the 
case of the Wigner distribution, let us observe a signal in the 

form 2( ) exp( 2 48(( 75) / 256) ) ( ).x n j n n     The 64-sample 
window size is used. The L-estimation is applied to the LAF. 
In order to illustrate the theoretical considerations given in 
Section II, different percentages Q of the omitted values, 
corresponding to different values of , are examined. The 
MSE between the original and the estimated WD is calculated 
for a single time instant (Fig. 2.a). We observe that, according 
to the theory presented in Section II, the standard L-estimate 
approach degrades almost linearly as the number of omitted 
samples increases. The proposed approach significantly 
improves the results of the L-estimate WD, as long as the 
number of omitted samples is below 80% (Fig. 2.a). It means 
that at least 25-30% of samples is required for desirable 
results, which is achievable in most real cases. One may 
generally assume that at least 25-30% of samples will be 
slightly influenced by impulsive noise, and can thus be used 
for reconstruction. Now, we observe the MSE analysis in the 
presence of impulse noise (Fig. 2.b). For a small number of 
removed samples (small ), the impulse noise dominates. 
After removing the strong pulses, the MSE for the CS based 
reconstruction is almost negligible over a wide range of 
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removed samples (from 30% to about 70%). Afterwards, the 
CS fails to provide any improvement. Thus, we may assert 
that when impulse noise is expected, about 70% of samples 
can be removed by using the L-statistics, and by applying the 
CS algorithm, the sparse signal reconstruction can be close to 
the original non-noisy signal.  

 

 
 
Fig 2. MSE between original and estimated WD (L-estimate WD - lines 
with “o”, Proposed CS approach – lines marked with “+”): a) Non-noisy 
case, b) Noisy case (30% of samples are corrupted by noise) in log scale  

 

 
The L-estimate WD and the CS based L-estimate WD, 

calculated for the entire signal in impulse noise are shown in 
Figs 3.a and b, respectively. We omit 50% of the data (15% 
more than the number of samples with significant noise). The 
case with Gaussian input noise is given in Fig. 3.c and d (70% 
samples are omitted). 

 
 

 
Fig 3. Impulse input noise: a) L-estimate WD , b) CS L-estimate WD, 

Gaussian input noise: c) L-estimate WD, d) CS L-estimate WD 
 

An example with a real world frequency modulated signal 
is considered (Fig 4). The echolocation Daubenton’s bat call is 
used (positive frequency range), with 60% of samples omitted.  

 
 

 
Fig 4. Echolocation bat sound: a) L-estimate WD, b) CS L-estimate WD 

V. CONCLUSION 

Compressive sensing was applied in combination with the L-
statistics to achieve highly concentrated spectral 
representation of noisy signals. The L-estimation approach 
removes the noisy peaks, but produces perturbations which 
can be cast as noise with a significant variance. It has been 
shown that CS can effectively reconstruct missing samples, 
which improves representation. The CS based L-estimation 
forms of both the STFT and the WD outperform their 
counterparts based on the standard L-estimate approach. The 
application of this approach would be of crucial importance in 
higher order signal analysis, when noise is inherently of 
impulse nature. 
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