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Motion Parameters Estimation by
Using Time-Frequency Representations

Srdjan Stanković, Igor Djurovíc

Abstract– The estimation of motion para-

meters of moving objects by using variable

µ-propagation and time-frequency representa-

tions is proposed. The spectrogram and the

Wigner distribution, two basic time-frequency

distributions, are used. Both the velocity and

the initial position can be accurately estimated

by this approach.
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The subspace-based line detection (SLIDE)
algorithm for high resolution estimation of the
line parameters, as well as its numerous inter-
esting applications, has been proposed in [1].
Recently, the SLIDE algorithm has been used
for estimation of velocity of moving objects in
video-sequences [2]. Motion estimation is a
very important topic in video-signal processing
(video-signal compression, road tracking, aer-
ial photograph processing, tomography, traffic
control, meteorology, etc.). The velocity deter-
mination problem, by using the SLIDE algo-
rithm and constant µ-propagation, is reduced
to the frequency estimation in the Fourier do-
main.
In this letter, variable µ-propagation is in-

troduced and velocity determination is per-
formed based on the instantaneous frequency
estimation. Time-frequency representations
for the instantaneous frequency estimation are
used [4], [5]. The variable µ-propagation pro-
vides estimation of initial position and velocity
in a single step.
An image containing a moving object can

be represented as i(x, y, t) = f(x, y) + s(x −
x0 − vxt, y− y0 − vyt) where s(x, y) is moving
object, f(x, y) is contrast background, while t
is the considered frame. The parameters of the
moving object are: initial position (x0, y0) and
velocity (vx, vy). The estimation of the motion
parameters of the moving object can be done
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by using the image projections to the x and y
axes. We will consider only the projection to
the x−axis: P (x, t) =

∑
y i(x, y, t), which will

be used for determination of x0 and vx. The
procedure which provides the estimation of y0
and vy is a straightforward extension.
The projection P (x, t) can be written as:

P (x, t) =
∑

y

f(x, y)+

∑

y

s(x− x0 − vxt, y − y0 − vyt) =

= F (x) + S(x− x0 − vxt) (1)

where
∑
y s(x, y) = S(x) and

∑
y f(x, y) =

F (x).
In order to eliminate background influence,

the derivative of projection with respect to t
is used:

∂P (x, t)/∂t = vx∂S(x− x0 − vxt)/∂x =

= Π(x− x0 − vxt) � P (x, t+ 1)− P (x, t).

By using the SLIDE model, with the con-
stant µ-propagation and ∂P (x, t)/∂t, we form
the signal:

zxx(t) =
∑

x

Π(x− x0 − vxt)e
jµx (2)

whose frequency corresponds to the veloc-
ity of the moving object. The Fourier
transform of the zxx(t) is: FT{zxx(t)} =
2πejx0µΦ(µ)δ(ωx − µvx) where Φ(µ) is the
Fourier transform of the projection’s function
Π(x). Note that, if Π(x − x0 − vxt) is close
to δ(x − x0 − vxt), the analysis is signifi-
cantly simplified and we obtain: FT{zxx(t)} �
2πδ(ωx−µvx). Thus the motion parameter vx
is determined as a position of the maximum of
the Fourier transform scaled with the parame-
ter µ.
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Wewill introduce the variable µ-propagation
in the form:

zxx2(t) =
∑

x

Π(x− x0 − vxt)e
jµx2 . (3)

Having in mind the previous considerations,
it is obvious that zxx2(t) has the form of a
linear frequency modulated (FM) signal. For
the sake of simplicity we will consider the
case when Π(x − x0 − vxt) is close to δ(x −
x0 − vxt). In this case we obtain: zxx2(t) =

ejµ(x0+vxt)
2

. For analysis of this type of sig-
nal time-frequency distributions are a more
appropriate tool than the Fourier transform.
The simplest time-frequency distribution is
the spectrogram, given as the squared mag-
nitude of the short-time Fourier transform:

SPECx(t, ω) = |STFT (t, ω)|
2 =

=

∣∣∣∣∣

∑

τ

zxx2(t+ τ)w(τ)e
−jωτ

∣∣∣∣∣

2

where w(τ) is the window function. The spec-
trogram of the linear FM signal can be approx-
imately represented as [3]:

SPECx(t, ω) ≈ kw
2

(
ω − µx0vx − µv

2
xt

µv2x

)
.

(4)
>From equation (4) it can be readily seen that
the maxima of SPECx(t, ω) are along the line
ω = µx0vx + µv2xt. However, the spectro-
gram exhibits a low time-frequency resolution,
as well as low concentration for this kind of
signals. Since the Wigner distribution is an
ideally concentrated distribution along the in-
stantaneous frequency for linear FM signals, it
is a more appropriate tool for this purpose [4].
The Wigner distribution is defined by:

WDx(t, ω) =

=
∑

τ

w(τ)zxx2(t+ τ)z
∗

xx2(t− τ)e
−j2ωτ .

The Wigner distribution of the signal
zxx2(t) = e

jµ(x0+vxt)
2

is:

WDx(t, ω) = 2πW (ω − µx0vx − µv
2
xt) �

TABLE I
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Exact SPEC WD

vx1 2.3 2.3531 2.2913
vy1 2.2 2.2935 2.1886
vx2 1.5 1.2933 1.4939
vy2 1.2 1.0023 1.2041
x0 15 18.63 15.07
y0 9 10.62 8.47

� 2πδ(ω−µx0vx−µv
2
xt) = 2πδ(ω− bx− axt).

where a wide window is assumed. We con-
clude that by using the variable µ-propagation,
we perform mapping of the projections to the
time-frequency chirp presentation. Thus, the
parameters vx and x0 can be easily deter-
mined from the WDx(t, ω). The parameters
are: ±vx =

√
ax/µ and x0 = bx/µvx. On the

base of projection derivative ∂P (x, t)/∂t the
ambiguity in sign of velocity is avoided. Illus-
tration of a parameter determination is shown
in Fig.1a.
Example: The object is moving through the

image with contrast background. The im-
age size is 256 × 256 pixels, while the object
size is 8 × 8. The initial position of the mo-
tion object is (x0, y0) = (15, 9), Fig.1b. For
the first 50 frames velocity parameters are
(vx1, vy1) = (2.3, 2.2), while in the next 50
frames they are (vx2, vy2) = (1.5, 1.2). The
spectrogram and the Wigner distribution are
shown on the Figs.2a and b. The instanta-
neous frequency estimation is shown in Fig.2c.
The estimated velocities are given in the Ta-
ble I. These results confirm that for signal with
linear instantaneous frequency the Wigner dis-
tribution exhibits a more accurate instanta-
neous frequency estimation than the spectro-
gram. Here, it means more accurate motion
parameters estimation.

III. C��	���
��

In this letter an approach to motion estima-
tion based on the variable µ-propagation and
time-frequency representations is proposed. It
is shown that the estimation is significantly
more reliable by using the Wigner distribution
instead of the short-time Fourier transform.
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Fig. 1. Illustration of determination of motion parameters and initial frame.

Fig. 2. Motion estimation for moving object with variable velocity: a) Spectrogram; b) Wigner distribution; c)
Velocity estimation: a) Thin line - spectrogram; b) Thick line - Wigner distribution.
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