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Adaptive Algorithm for Chirp-Rate
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Abstract– Chirp-rate, as a second derivative

of signal phase, is an important feature of

nonstationary signals in numerous applications

such as radar, sonar, communications, etc. In

this paper, an adaptive algorithm for the chirp-

rate estimation is proposed. It is based on the

confidence intervals rule and the cubic-phase

function. The window width is adaptively se-

lected to achieve good trade-off between bias

and variance of the chirp-rate estimate. The

proposed algorithm is verified by simulations

and the results show that it outperforms the

standard algorithm with fixed window width.

I. I������	�
��

Instantaneous frequency (IF) estimation is
a challenging topic in the signal processing
[1]. The IF is defined as the first derivative
of the signal’s instantaneous phase. Time-
frequency (TF) representations are main tools
for non-parametric IF estimation. The posi-
tions of peaks in the TF representation can
be used as an IF estimator. There are sev-
eral sources of errors in this estimator: higher-
order derivatives of the signal phase and the
noise. For relatively high signal-to-noise ra-
tio (SNR), Stankovíc and Katkovnik have pro-
posed an IF estimator based on intersection of
confidence intervals rule (ICI) that produces
results close to the optimal mean squared error
(MSE) of the IF estimate, by achieving trade-
off between bias and variance [2]-[7].

Sometimes in practice there is a need for
an estimation of the second-order derivative
of signal phase. Estimation of this parame-
ter, referred to as the chirp-rate, is important
in radar systems, for example, focusing of the
SAR images [8], [9].

Recently, O’Shea and co-workers have pro-
posed a chirp-rate estimator based on the cu-
bic phase function (CPF) [10]-[14]. It gives
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accurate results for a third-order polynomial
phase signal. In this paper, we consider non-
parametric chirp-rate estimation without the
assumption on the polynomial phase structure.
To this end, an adaptive algorithm for the
chirp-rate estimation is proposed based on the
ICI algorithm [15]-[18]. The proposed estima-
tor performs well for moderate noise environ-
ments.
The paper is organized as follows. The CPF-

based nonparametric chirp-rate estimator is
presented in Section II. In Section III asymp-
totic expressions for the bias and the variance
of the nonparametric chirp-rate estimate are
provided as a prerequisite for the proposed
adaptive algorithm. Full details of the adap-
tive algorithm based the ICI principle are pre-
sented in Section IV. Numerical examples are
given in Section V. Conclusions are given in
Section VI.

II. CPF-����� N����������
	

C�
��-���� ���
�����

Consider a signal f(t) = A exp(jφ(t)). The
first derivative of the signal phase, ω(t) =
φ′(t), is the IF. An important group of the IF
estimators is based on TF representations [1],
[19], [20]. Consider, for example, the Wigner
distribution (WD) in a windowed (pseudo)
discrete-time form:

WDh(t, ω) =
∞∑

n=−∞

wh(nT )

×f(t+ nT )f∗(t− nT ) exp(−j2ωnT ), (1)

where T is the sampling interval and wh(nT ) is
the window function of the width h, wh(t) �= 0
for |t| ≤ h/2. The IF can be estimated from
locations of peaks in the WD as:

ω̂h(t) = argmax
ω
WDh(t, ω). (2)
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A close look at the phase of the local auto-
correlation f(t + nT )f∗(t − nT ) by means of
Taylor expansions is:

Φ(t, nT ) = φ(t+ nT )− φ(t− nT )

≈ 2φ′(t)(nT ) + φ(3)(t)(nT )
3

3

+φ(5)(t)
2(nT )5

5!
+ ... (3)

where φ(k)(t), is defined as the k-th derivative
of the phase. When higher-order phase deriva-
tives are equal to 0, the WD is ideally concen-
trated along the IF, i.e., it achieves maximum
along the IF line ω(t) = φ′(t). Therefore, the
IF can be calculated as

φ′(t) ≈ φ(t+ nT )− φ(t− nT )
2(nT )

, (4)

by ignoring higher-order derivatives.
Estimation of the higher-order phase terms

is also very important, for example, in radar
signal processing (proper estimation of higher-
order phase terms can be helpful in focusing
of radar images [21]-[29]). Commonly, higher-
order non-linearity exists in the estimate. The
non-linearity causes performance degradation
of the IF estimate. For example, it reduces
the SNR threshold of the method applicability
[23].
Analogy to the above observations on the

IF estimation, the chirp-rate parameter (i.e.,
the second-derivative of the phase) can be ob-
tained by:

φ(2)(t) ≈ φ(t+ nT )− 2φ(t) + φ(t− nT )
2(nT )2

.

(5)
This approximate formula corresponds to
the local auto-correlation function f(t +
nT )f∗2(t)f(t− nT ). Since f∗2(t) does not de-
pend on nT , the CPF was proposed for the
chirp-rate estimation:

Ch(t,Ω) =
∞∑

n=−∞

wh(nT )×

f(t+ nT )f(t− nT ) exp(−jΩ(nT )2) . (6)

where Ω denotes chirp-rate index. The rec-
tangular window function (finite number of

samples) is inherently assumed in the original
O’Shea estimator. Here, in our derivations of
the adaptive chirp-rate estimator, we will as-
sume that a general window function is used.
The CPF-based nonparametric chirp-rate es-
timation can be performed as:

Ω̂h(t) = argmax
Ω
|Ch(t,Ω)|2. (7)

In this manner the non-linearity of the chirp-
rate estimation is kept to the same order as
in the WD case, i.e., the second order non-
linearity. It results in high accuracy approach-
ing the Cramer-Rao lower bound (CRLB) for
a wide range of the SNR for Gaussian noise
environment [10], [11], [13].
However, non-polynomial phase signal or

high-order polynomial phase signal this es-
timator is biased, and the performance de-
grades. To relax the application range of the
CPF-based chirp-rate estimator, in this follow-
ing, an CPF-based algorithm with adaptive
window width is proposed. Specifically, the
window width is adaptively determined by us-
ing the ICI algorithm.

III. A�������
	 �
�� ��� ���
��	�

The chirp-rate is estimated by using the po-
sition of the peaks in the magnitude-squared
CPF. The CPF is ideally concentrated on the
chirp-rate for signals, when the fourth and
other higher-order phase derivatives are equal
to zero. However, for signals with these deriv-
atives being different from zero, this is not the
case. Higher order derivatives produce bias in
the chirp-rate estimation. The asymptotic ex-
pression for the bias, derived in the Appendix,
is:

bias{Ω̂h(t)} = E{∆Ωh(t)} 	 φ(4)(t)wbh2,
(8)

where wb is a constant dependent on the se-
lected window type only, while φ(4)(t) is the
fourth derivative of the signal phase. Assume
that the signal corrupted by the additive white
Gaussian noise ν(t) with:
• mutually independent real and imaginary
parts,
• zero-mean E{ν(t)} = 0 and
• covariance E{ν(t′)ν∗(t′′)} = σ2δ(t′ − t′′),
where σ2 is variance while δ(t) is the Dirac
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delta function defined δ(t) = 1 for t = 0 and
δ(t) = 0 elsewhere.
Then, the asymptotic expression for vari-

ance of the chirp-rate estimator (7), for rel-
atively high SNR, exhibits:

var{Ω̂h(t)} 	
σ2

A2
h−5wv, (9)

where wv depends on the selected window type
only (see Appendix). Obviously, the bias in-
creases with the increase of the window width,
while the variance decreases at the same time.
The MSE of the estimator is

MSE{Ω̂h(t)}

= bias2{Ω̂h(t)}+ var{Ω̂h(t)}

= [φ(4)(t)]2w2bh
4 +

σ2

A2
h−5wv. (10)

From (10), by minimizing the MSE with re-
spect to h, we get

hopt(t) =
9

√√√√ 5 σ
2

A2wh

4[φ(4)(t)]2w2b
. (11)

Since the fourth order derivative of the sig-
nal phase is not known in advance, we cannot
determine the optimal window length hopt(t)
in practice. In this paper, an algorithm that
can produce adaptive window width, close to
the optimal one, is proposed without know-
ing phase derivatives in advance. The ICI al-
gorithm [2]-[7] is developed for similar prob-
lems with a trade-off in parameter selection
between the bias and variance. The ICI-based
algorithm for the second order derivative esti-
mation is given in the next section.

IV. I������	�
�� 	���
���	� 
�������

�����
���

Here, we will briefly describe the ICI algo-
rithm for achieving the trade-off between in-
fluence of the higher-order derivatives (bias)
and noise (variance). Consider the set of in-
creasing window widths H = {h1, h2, ..., hQ},
hi < hi+1. These windows are selected in
such a manner that hi ≈ ai−1h1, a > 1. It
is assumed that the optimal window hopt(t),
for a given instant, is close to a value from

the considered set. Chirp-rate estimates cor-
responding to all windows from H are Ω̂hi(t),
i = 1, 2, ..., Q. They are obtained as:

Ω̂hi(t) = argmax
Ω
|Chi(t,Ω)|2, (12)

where Chi(t,Ω) is the CPF calculated with
window whi(t) of the width hi, whi(t) �= 0 for
|t| ≤ hi/2. Around any estimate we can create

a confidence interval [Ω̂hi(t)−κσ(hi), Ω̂hi(t)+
κσ(hi)], where κ is the parameter that con-
trols probability that exact chirp-rate para-
meter belongs to the interval, while σ(hi) =
σ
Ah

−5/2
i

√
wv (21). For Gaussian variable we

know that exact value of the parameter be-
longs to the interval with probability P (κ) (for
example, P (2) = 0.95 and P (3) = 0.997).
According to [7], the optimal window is close

to the widest one where the confidence inter-
vals, created with two neighboring windows
from set H, still intersects. This can be writ-
ten as:

|Ω̂hi(t)−Ω̂hi−1(t)| ≤ κ(σ(hi)+σ(hi−1)). (13)

It is required that this relationship holds also
for all narrower windows:

|Ω̂hj (t)− Ω̂hj−1(t)| ≤ κ(σ(hj) + σ(hj−1)),

j ≤ i. (14)

Then we can adopt that the optimal window
estimate for the considered instant is ĥopt(t) =

hi or ĥopt(t) = hi−1.
As it is shown in [2], selection of particu-

lar window depends on bias and variance (in
fact on powers of parameter of interest hn

and h−m) in considered application. Namely,

in our application bias2{Ω̂h(t)} ∝ h4 while

var{Ω̂h(t)} ∝ h−5. Then, according to [2], it is
better to take previous window ĥopt(t) = hi−1
as the optimal estimate since the next window
can already have large bias. The algorithm ac-
curacy depends on the proper selection of pa-
rameter κ. This selection is discussed in de-
tails in [2]. It can be assumed that algorithm
for relatively wide region of κ ∈ [2, 5] produces
results of the same order of accuracy. The
cross-validation algorithm [4] or results from
analysis given in [2] can be employed in the
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case where precise selection of this parameter
is required. In our simulations, κ = 3 is used.
The remaining question in the algorithm is

how to estimate σ(hi) since the signal ampli-
tude and noise variance (A and σ) are not
known in advance. There are several ap-
proaches in the literature, but here we will use
a simple and very accurate technique from [30].
Namely, amplitude can be estimated as:

Â2 =
√
|2M2

2 −M4| (15)

where

Mi =
1

N

∑
xi(n), (16)

where N is number of signal samples, while
the variance can be estimated as:

σ̂2 = |M2 − Â2|. (17)

V. N����
	�� ��������

We considered two test signals:

f1(t) =

{
exp(j12πt

2) t ≥ 0
exp(−j12πt

2) t < 0
(18)

and
f2(t) = exp

(j8πt4) . (19)

The exact chirp-rates for these two signals are
Ω1(t) = 24πsign(t) and Ω2(t) = 96πt2. Signal
is considered within interval t ∈ [−1/2, 1/2]
with sampling rate T = 1/257. Set of used
window widths is hi = NiT , where Ni =
ai−1N1 and a =

√
2 and N1 = 5. We al-

ways set the closest possible window from the
set with odd number of samples in the in-
terval. Total number of windows in the set
is 13. Figure 1 depicts the MSE of the ob-
tained chirp-rate estimators for: σ = 0.06
(first row, SNR = 24dB), σ = 0.09 (second
row, SNR = 21dB) and σ = 0.12 (third row,
SNR = 18dB). The left column is given for
the first test signal (18) while the right col-
umn represents results for the second test sig-
nal (19). Results are obtained with the Monte
Carlo simulation with 100 trials. Thin line
marks results obtained with the windows of
the fixed width, while thick line represents re-
sults achieved with the proposed algorithm. It

can be seen that the proposed algorithm gives
more accurate results than almost all windows
with fixed width. It may happen that some
of windows with fixed width outperform our
algorithm, but it should be kept in mind that
the best window is not known in advance. For
example, it can be seen that the best fixed win-
dow width for the first test signal and σ = 0.06
(Fig. 1a) is about N = 20 samples, for the
second signal and the same noise it is about
N = 50 samples (Fig. 1b), while for the first
signal and σ = 0.12 (Fig. 1e) it is about
N = 70 samples.
Illustration of the adaptive CPF for the

chirp-rate estimation for the first test signal
embedded in the noise with σ = 0.09 is de-
picted in Figure 2. Figs. 2a-f represent the re-
sult obtained with fixed window widths (N =
9, N = 17, N = 33, N = 65, N = 129, and
N = 257). Results obtained with the proposed
algorithm are presented in Fig. 2g. Bias in the
region close to the abrupt change can be ob-
served. It is caused by the fact that we need
a narrow window in this region and that this
window produces estimate highly corrupted by
noise (see Fig. 2a). Fig. 2h depicts the adap-
tive window width.
Results achieved with the second test signal

for σ = 0.09 are depicted in Figure 3. Here,
the fourth order derivative of the signal phase
is constant and we can expect that the optimal
window width is constant. High noise influ-
ence can be observed for small window widths
(Fig. 3b, c, N = 9 and N = 17) while, at
the same time, the bias can be seen for wide
window (Fig. 3f, N = 257). The chirp-rate
estimate and corresponding adaptive window
width are depicted in Figs. 3g, h. It can be
seen that the proposed algorithm gives adap-
tive window width close to constant as it was
expected.

VI. C��	���
��

An adaptive chirp-rate estimator is intro-
duced for a general signal model. It is based on
the confidence intervals-rule. Selection of the
algorithm parameters is discussed. The pro-
posed algorithm is tested on two characteris-
tic test signals. The obtained results are good,
close to the optimal one that can be achieved
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Fig. 1. MSE for the chirp-rate estimation: (a) Signal 1, σ = 0.06; (b) Signal 2, σ = 0.06; (c) Signal 1, σ = 0.09;
(d) Signal 2, σ = 0.09; (e) Signal 1, σ = 0.12; (f) Signal 2, σ = 0.12. Thin line - fixed window estimator;
Thick line - adaptive window width.

with the CPF function.

A�����
�

I. A�������
	 �
�� ��� ���
��	�

Our observation is modeled as x(t) = f(t)+
ν(t) where f(t) = A exp(jφ(t)), while ν(t)
is Gaussian noise with mutually independent
real and imaginary parts, with zero-mean
E{ν(t)} = 0 andE{ν(t′)ν∗(t′′)} = σ2δ(t′−t′′).
Chirp-rate is estimated by using position of the
CPF maximum. The CPF is ideally concen-
trated on the chirp-rate for noiseless signals
when φ(k)(t) = 0 for k > 3. Introduce the
following notation Fh(t,Ω) = |Ch(t,Ω)|2 for
squared-magnitude of the CPF. Here, index h
denotes width of the used even window func-
tion, wh(t) �= 0 for |t| ≤ h/2, wh(t) = wh(−t).
Two main sources of errors in the CPF are: 1)
errors caused by non-zero higher-order deriv-

atives of the signal phase (contributing to the
bias); 2) errors caused by the noise (contribut-
ing to the variance). For the sake of brevity,
here we will give the main steps of the deriva-
tions. According to [3], the bias of the chirp-
rate estimator can be expressed as:

E{∆Ωh(t)} = bias{Ω̂h(t)}

= −
∂Fh(t,Ω)

∂Ω |0δ∆Ω
∂2Fh(t,Ω)
∂Ω2 |0

, (20)

while the variance is

var{Ω̂h(t)} =
E

{[
∂Fh(t,Ω)

∂Ω |0δν
]2}

[
∂2Fh(t,Ω)
∂Ω2 |0

]2 , (21)

where:
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Fig. 2. Chirp-rate estimation for test signal 1: (a) Fixed window N = 9 samples (h = 9/257); (b) Fixed window
N = 17 samples (h = 17/257); (c) Fixed window N = 33 samples (h = 33/257); (d) Fixed window N = 65

samples (h = 65/257); (e) Fixed window N = 129 samples (h = 129/257); (f) Fixed window N = 257

samples (h = 1); (g) Estimator with adaptive window width; (h) Adaptive window width.

• ∂2Fh(t,Ω)/∂Ω2|0 is evaluated at the posi-
tion of the true chirp-rate, with the assump-
tion that the signal has all phase derivatives
higher than 2 equal to zero and that there is
no noise;
• ∂Fh(t,Ω)/∂Ω|0δ∆Ω is evaluated at the posi-
tion of true chirp-rate with assumption that es-
timation error is caused only by higher-order
derivatives of the signal phase (noise-free as-
sumption);
• ∂Fh(t,Ω)/∂Ω|0δν is evaluated at the position
of the true chirp-rate with the assumption that
there is no higher order phase derivatives, i.e.,
noise only influenced error.

Then three intermediate quantities ∂
2Fh(t,Ω)
∂Ω2 |0,

∂Fh(t,Ω)
∂Ω |0δ∆Ω , and E

{[
∂Fh(t,Ω)

∂Ω |0δν
]2}

are

needed to determine asymptotic bias and vari-
ance. Calculations of these quantities are
shown below.

A. Determination of ∂2Fh(t,Ω)/∂Ω
2|0

Determination of ∂2Fh(t,Ω)/∂Ω
2|0 is per-

formed on true chirp-rate, i.e., Ω = φ(2)(t) un-
der assumption that there is noise and higher
order terms in the signal phase. Then the CPF
exhibits:

Ch(t,Ω) = exp
(j2φ(t))

∞∑

n=−∞

wh(nT )
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Fig. 3. Chirp-rate estimation for test signal 2: (a) Fixed window N = 9 samples (h = 9/257); (b) Fixed window
N = 17 samples (h = 17/257); (c) Fixed window N = 33 samples (h = 33/257); (d) Fixed window N = 65

samples (h = 65/257); (e) Fixed window N = 129 samples (h = 129/257); (f) Fixed window N = 257

samples (h = 1); (g) Estimator with adaptive window width; (h) Adaptive window width.

×A2 exp(jφ(2)(t)(nT )2) exp(−jΩ(nT )2) . (22)

Value of Fh(t,Ω) = |Ch(t,Ω)|2 is:

Fh(t,Ω) = A
4

∞∑

n1=−∞

∞∑

n2=−∞

wh(n1T )w
∗

h(n2T )

× exp(jφ(2)(t)(n1T )2−jφ(2)(t)(n2T )2)

× exp(−jΩ(n1T )2+jΩ(n2T )2) (23)

The second partial derivative ∂2Fh(t,Ω)/∂Ω
2|0,

evaluated for Ω = φ(2)(t), is:

∂2Fh(t,Ω)

∂Ω2
|0 = −

∑

n1

∑

n2

A4wh(n1T )

×w∗h(n2T )
(
(n1T )

2 − (n2T )2
)2

= −2A4
∑

n1

∑

n2

wh(n1T )wh(n2T )

×[(n1T )4 − (n1T )2(n2T )2]
= 2A4h4[F 22 − F4F0], (24)

where (see Appendix of [3])

Fk =

∫ 1/2

−1/2

w(t)tkdt. (25)

B. Determination of ∂Fh(t,Ω)/∂Ω|0δ∆Ω
Assumptions in the evaluation of the second

term ∂Fh(t,Ω)/∂Ω|0δ∆Ω are similar like for the
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first terms, except the influence of the higher-
order phase terms that now is not neglected:

∂Fh(t,Ω)

∂Ω
|0δ∆Ω =

A4
∑

n1

∑

n2

wh(n1T )w
∗

h(n2T )

×(−j((n1T )2 − (n2T )2))

× exp
(
2j
∑

∞

k=2 φ
(2k)(t)

(n1T )
2k

−(n2T)
2k

(2k)!

)

. (26)

For simplicity, all higher-order derivatives,
except the fourth order are removed, i.e.,
|φ(4)(t)| 
 |φ(2k)(t)| for k > 2:

∂Fh(t,Ω)

∂Ω
|0δ∆Ω = A4

∑

n1

∑

n2

wh(n1T )

×w∗h(n2T )(−j((n1T )2 − (n2T )2))

× exp
(
jφ(4)(t)

(n1T )
4
−(n2T )

4

12

)

. (27)

Under the assumption that argument of ex-

ponential function φ(4)(t) (n1T )
4
−(n2T )

4

12 is rela-
tively small, we can write

exp

(
jφ(4)(t)

(n1T )
4
−(n2T )

4

12

)

≈ 1 + jφ(4)(t)(n1T )
4 − (n2T )4
12

. (28)

Finally, we get:

∂Fh(t,Ω)

∂Ω
|0δ∆Ω

= φ(4)(t)
∑

n1

∑

n2

A4wh(n1T )w
∗

h(n2T )

×((n1T )2 − (n2T )2)((n1T )4 − (n2T )4)
= 2A4φ(4)(t)h6[F6F0 − F2F4]. (29)

C. Determination of E
{
[∂Fh(t,Ω)/∂Ω|0δν ]2

}

In the evaluation ofE
{
[∂Fh(t,Ω)/∂Ω|0δν ]

2
}

higher-order phase terms are removed while
now we consider the influence of the additive
Gaussian noise. Then, the term required for
determination of the variance is given as:

E

{[
∂Fh(t,Ω)

∂Ω
|0δν

]2}

=
∑

n1

∑

n2

∑

n3

∑

n4

wh(n1T )

×wh(n2T )wh(n3T )wh(n4T )

×E{x(t+n1T )x(t−n1T )x∗(t+n2T )x∗(t−n2T )

×x∗(t+n3T )x∗(t−n3T )x(t+n4T )x(t−n4T )}

×((n1T )2 − (n2T )2)((n3T )2 − (n4T )2)

× exp(−jΩ(n1T )2+jΩ(n2T )2+jΩ(n3T )2−Ω(n4T )2) .
(30)

Determination of

E{x(t+ n1T )x(t− n1T )x∗(t+ n2T )

×x∗(t− n2T )x∗(t+ n3T )x∗(t− n3T )

×x(t+ n4T )x(t− n4T )} (31)

is a rather tedious job. By assuming high
SNR, i.e., A2/σ2 
 1, the above equation
can be approximated by using only terms with
two noise factors. Then, from all possible 128
combinations of signal and noise we can select
just those where we have 2 noise terms and
6 signal terms. Namely, combinations with
1 and 3 noise terms give expectation equal
to zero, while we can assume that combina-
tions with 4 and more noise terms due to
introduced high SNR assumption are much
smaller than the expectation of combinations
with 2 noise terms. There are 28 combina-
tions in total, with 2 noise terms. Fortunately,
a high number of them have zero expecta-
tion. Namely, for the used noise model (com-
plex Gaussian noise with independent real and
imaginary parts) it holds E{ν(t1)ν(t2)} =
E{ν∗(t1)ν∗(t2)} = 0. This eliminates 12 com-
binations from (31). Furthermore, combina-
tions E{ν(t±n1T )ν∗(t±n2T )} = σ2δ(n1±n2)
and combinations E{ν∗(t±n3T )ν(t±n4T )} =
σ2δ(n3 ± n4) will also produce a zero-mean,
since they cause (n1T )

2 − (n2T )
2 = 0 or

(n3T )
2 − (n4T )2 = 0 in (30). This elimi-

nates next 8 combinations. Only 8 remaining
combinations: E{ν(t ± n1T )ν∗(t ± n3T )} =
σ2δ(n1±n3) and E{ν∗(t±n2T )ν(t±n4T )} =
σ2δ(n2 ± n4) give results of interest. We will
consider just one of these 8 combinations, since
all others produce the same result. Here, we
will consider situation where the first term
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x(t+n1T ) and the fifth x∗(t+n3T ) are noisy
terms while others are signal terms:

∑

n1

∑

n2

∑

n3

∑

n4

wh(n1T )wh(n2T )wh(n3T )

×wh(n4T )σ2δ(n1 − n3)f(t− n1T )f∗(t+ n2T )
×f∗(t− n2T )f∗(t+ n3T )f∗(t− n3T )

×f(t+ n4T )f(t− n4T )}((n1T )2 − (n2T )2)
×((n3T )2 − (n4T )2)

×e(−jΩ(n1T )2+jΩ(n2T )2+jΩ(n3T )2−Ω(n4T )2)

=
∑

n1

∑

n2

∑

n4

σ2|f(t− n1T )|2w2h(n1T )

×wh(n2T )wh(n4T )f∗(t+ n2T )f∗(t− n2T )
×f(t+ n4T )f(t− n4T )((n1T )2 − (n2T )2)

×((n1T )2 − (n4T )2)e(jΩ(n2T )
2
−Ω(n4T )

2)

= σ2A6
∑

n1

∑

n2

∑

n4

w2h(n1T )wh(n2T )

×wh(n4T )((n1T )2−(n2T )2)((n1T )2−(n4T )2)
= σ2A6h3[E4F

2
0 − 2E2F2F0 +E0F 22 ], (32)

where Ek is calculated according to [3]

Ek =
1

T

∫ 1/2

−1/2

w2(t)tkdt.

The same results as (32) can be obtained for
the other seven terms, so we have

E

{[
∂Fh(t,Ω)

∂Ω
|0δν

]2}

= 8σ2A6h3[E4F
2
0 − 2E2F2F0 +E0F 22 ]. (33)

Substituting (24), (29), and (33) in (20) and
(21) we are getting expressions for the bias and
variance (8) and (9).
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