(i) for very low supply voltage, the delay variations due to the
voltage threshold voltages could be very large [7]. It can be shown
that if the clock inverter delay at high voltage is generally smaller
than the master latch delay, it could be the contrary at very low
voltages (< 1V) [7].

(iv) for the cell design itself, i.e. people designing, for instance,
flip-flops for cell libraries, it is much more difficult to design cells
containing a critical race. Obviously, it is necessary to control the
race, so we must, for instance, keep an internal delay quite long. It
could be at the price of a slower cell if this internal delay is on the
critical path of the cell. Or if a fast cell is mandatory, it means
that the input inverter must be faster, requiring very large transis-
tors and a lot of power.

Speed-independence at gate level: Race-free or speed-independent
circuits at the implementation levels can be designed using another
design method [4 — 6] based on the properties of the negative
gates. The method starts from a flow table (and not from a STG
or SG). The basic idea is to modify the original flow table by add-
ing supplementary internal variables to satisfy the properties of
the negative gates. So, the final synthesis produces only negative
gates without input inverters. The divider (by two) in [5] has no
clock inverter (it is a static version of a TSPC true single phase
clock [8]) and contains four gates and 24 transistors. The divider
derived from a flip-flop with D = not(Q) in [4, 5] with five gates
contains 24 transistors [7] and can be reduced to 22 transistors or
less [[9], paper 2.2].
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Algorithm for the Wigner distribution of
noisy signals realisation

LJ. Stankovié

A simple robust algorithm which efficiently represents signals with
a very high amount of noise is presented, according to the
expressions for the mean, variance and the optimal window width
of the Wigner distribution estimator. Its application in the time-
varying filtering is illustrated.

Introduction: Time-frequency analysis provides a joint time-fre-
quency representation of a signal and is an area of intensive
research [1]. Among the quadratic energy distributions, the Wigner
distribution (WD), along with its smoothed forms, plays the cen-
tral role. Analysis of the noise influence on these distributions is

an important research topic which has been reported in several
papers; some of the most recent ones are [2 — 4]. A simple algo-
rithm, which can significantly improve time-frequency representa-
tion in the case of signals heavily corrupted by the noise, is
presented in this Letter. The algorithm is based on two Wigner
distributions, with two very different window widths: one is such
that the bias is always small; the other is such that the variance is
always small. The idea for this algorithm originated from the
method for nonparametric regression [5], and its version for the
mnstantaneous frequency estimation [6, 7). The conditions, results
and conclusions are quite different from the case where the instan-
taneous frequency estimation was considered [6, 7).

The WD, in its pseudo-form, of a discrete-time noisy signal x(r)
= fln) + v(n) is defined as [1, 3, 8]:

feo]

Z w(k)w(—k)z(n +k)z* (n — k)e 528

k=—oc0
ey

where N is the window w,(k) = w(k)w(=k) length. We will consider
the case when the signal f{n) is deterministic and the noise v(n) is
white, Gaussian, and complex with independent real and imagi-
nary parts, [2 — 4]. The variance of noise is assumed to be ¢2.
Estimator W (n, 8; N) of W(n, 6; N) has the bias [3]

1 82Wff(n,9;N)
8 562

Wae(n,0; N) =

bias(n, 0, N) = 9= éBf(m@)mz

2)
where m, = (1/2m)[% e?F (w)dw is the amplitude moment and
F(0) = FIw/(k)] is the Fourier transform of w,(k). If w(k) is a
Hanning window, then m, = 2(/ N)>. The variance of W, (n, 6; N)
could be written as eqns. 2 and 3:

N/2—1

2 _ 2 E
Ozz = 0y

k=-N/2

wi(B)[|f (0 + B + |f(n — B) + 07]

(3)
For an FM signal f{n) = A(m)exp(jo(n)) with slow varymg amph—
tude 62, = E,02 24%(n) + o2), where E, = T3 n, w2(k) is the
energy of w,(k). For the Hanning window w,(k), we have E, = 3N/
8

The optimal window length can be obtained by minimising the
mean square error ¢ = bias’(n, 8; N) + ¢2,. For the FM signal
with slow-varying amplitude and the Hanning window, the mean
square error is (eqns. 2 and 3)

4

2 . 2(p) 4+ o2
From
9e%(n,0; N) —0
ON -
the optimal window width N, follows [3]:
B2(n,0)mt
[y i
Nowt =\ 3020222 (n) + 02) )

For optimal window width bias(n, 6; N,,) = 0,/2. But eqn. 5 is
not practically useful since it requires B{z, 6) which is not known
and depends on the WD’s derivatives. The main topic of this Let-
ter is to present a very simple method that will significantly
improve the time-frequency presentation, on the basis of time-fre-
quency varying window width Mn, 8), obtained without using the
bias parameter B(r, 0).

For the WD of signal f{n), W;(n, 6; N), and its estimator W, (n,
0; N) as a random variable, we may write

|Wae(n,8; N)—{W;e(n,0; N)+bias(n, 8; N)]| < kope(N)
(6)

where the inequality holds with a probability P(x) depending on
parameter x. For now assume that x is such that P(x) = 1. In sta-
tistics that usually means taking ¥ = 2, known as a two-sigma
role, when for the Gaussian distribution of error P(x) > 0.95.
According to eqn. 6, if the bias is small, i.e. such that bias(n, 6; N)
< 0,(N)/2 for each considered N, all confidence intervals

D(n,0;N) = [ Woa(n,0: V) — ( >am<N>,
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Weo(n,0; N) + (n + %) Oa(N )] ()

intersect, since W{n, 6; N) € D(n, 8; N). Of course, if the bias is
large compared with the variance then D(n, 6; N), for two differ-
ent N, will not intersect.

Algorithm: A very simple algorithm, proposed here, is based on
the following fact: for regions in the time-frequency plane where
W, (n, 8; N) = 0 (or is very slow-varying with respect to 0, for a
given instant n), we have B, 6) = 0 and, consequently, the opti-
mal window width (eqn. 5) is very small and theoretically tends to
zero. For the points where the distribution W(n, 9; N) is highly
concentrated around the instantaneous frequency, the values of
distribution derivatives are large and the bias parameter B/(n, 6) is
large. For those points, the optimal window width should be very
large as well.

Now, we assume a set of only two window lengths N = {N,,
N,}, such that NV, is small enough that the variance of distribution
is small at any point (», 8), and N, is large so that the bias is small
at any point, i.e. N; < N,. This choice is possible according to eqn.
4. If the bias at a point (n, 6) is very small, i.e. the factor bias(n, 6;
N,) is close to zero, then all confidence intervals (eqn. 7), including
those for N, and N,, will intersect. Thus, for this point, we will use
a better choice with respect to variance, i.c. distribution W, (n, 6;
N,) calculated with N,. Otherwise, for large bias we have that the
confidence intervals {eqn. 7) do not intersect and, for that point,
we will use the distribution calculated with N,. According to the
relation between the bias and variance for the optimal window
length, if we take the bias to be ‘small’ if bias(n, 0; N) < 6,,/2 and
‘large’ otherwise, then according to eqn. 7, we obtain the adaptive
distribution with time-frequency varying window length:

(a) [ Wye(n,0; N1) for & = true
Wee' (n,0) = {Wm(n,& N3) otherwise ®)

where, according to eqln. 7, the event @ = true is W, (n, 0; N)) —
W, 0; Ny)| € (x + 5)[0.(N,) + 0.(N,)]. Therefore, using only
two distributions, we can expect a significant improvement in the
time-frequency representation. A theoretical analysis, as in [7],
with a large number of window lengths within interval (N, N,)
can prove that we may get the optimal window length (eqn. 5)
within the accuracy of the window length discretisation. But, we
have concluded that the multi-window approach, although theo-
retically more accurate, does not in practice produce significant
improvement with respect to the very simple two-windows
approach presented here.

The only parameter which is required in eqn. 8 is the variance
O,.(IV). There are several ways to accurately estimate it. For high
noise cases, 63 > A2 as in this Letter, the estimation is very sim-
ple since 6L (NVE(N) = 63 24%n) + 03) = (03 + L) =
(=%, Factor E (N) = N is a constant for the given window
type. The variance o,(N;) can be calculated from the better esti-
mated 6,.(N,) as 62.(N)) = 62 (N)N/N,. Since ¢.(N) is fre-
quency independent, it can also be estimated, for a high noise
cases and a given instant n, by calculating the variance of W_(n,
6; N,) over frequency 6. Some other approaches for the precise
variance estimation, including small noise cases are presented in

[7].

Example: Consider a sum of three noisy chirp signals:
2(n) = A(efzs(ano‘zs)zej12oo(nT)2
+ 6720(nT70.65)2ej750(nT+O.75)2
+3.56——22500(nT—O.96875)2eleOOnT) + v(n) (9)

The sampling interval 7 = 1/2048, with N = {64, 512} samples
within the Hanning window are used. The signal amplitude and
variance of noise are such that 10log(E/c?) = -5 [dB]. The WDs
with constant window widths and adaptive window width are pre-
sented in Fig. 1. The algorithm has chosen the distribution with NV,
= 64 and very low variance for all regions where the bias is small,
including the third signal component. Distribution with N, = 512
is chosen by the algorithm only for the small regions where the
first two signal components exist (Fig. 1). It is exactly what we
wanted and expected. Note that the signals do not significantly
overlap in time, so the lag-window was sufficient to reduce the

cross-terms in the WD. To combine two WDs, the distribution
with N, = 64 is interpolated (using zero padding prior to the FFT)
up to N, = 512.

0.2 WS i
0 1000 2000 0 1000 2000
a b

’ 0 1000 2000
4

Fig. 1 Wigner distribution of noisy signal
a Constant window length N, = 64

b Constant window length N, = 512
¢ Adaptive time-frequency varying window length
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Fig. 2 Time-varying filtering
a Original signal without noise

b Noisy signal
¢ Signal filtered with time-varying filter

Time-varying filtering application: The distribution W@ (n, 0),
presented in Fig. lc, is used as an estimate of W(n, 0) in the time-
varying Wiener filter definition, [9], H(n, 8) = W(n, 6)/W,(n, 6).
Using this transfer function, the signal x(n) = f{n) + v(n) is filtered
and the following equation is produced:

ot 1 /2
y(n) m_z_:oo il m)r(m) = 5 /_ L Hm0x @0
In this example, the simplified form of H(n, 6) is used: H{n, 0) = 1,
for a given time instant #, on 6 where the maximum of W@ (n, 0)
is detected, and zero otherwise. The original signal, the noisy sig-
nal and the signal after time-varying filtering using H(n, 6) are
shown in Fig. 2. The efficiency of the time-varying filter is evident,
especially if we have in mind that the signal occupies a wide fre-
quency range and the time-invariant filtering would not produce a
significant noise reduction.

Conclusion: The presented algorithm may be used efficiently in the
time-frequency representation of noisy signals, as well as being
applied to time-varying filtering. The theory is quite general and
may casily be extended to other time-frequency distributions.
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Analysis of ML and WSF in wireless channels
K.W. Cheung and S.W. Cheung

The performances of the WSF and deterministic ML methods are
studied and compared when used without minimising techniques
to super-resolve the coherent multipath components in simulated
and experimental multipath channels. Studies have shown that,
when all the sources are coherent, the WSF and the deterministic
ML methods achieve the same results.

Introduction. Tt has been proven that with the use of minimising
techniques the weighted subspace fitting (WSF) method always
performs better than the deterministic maximum likelihood (ML)
method for direction-of-arrival (DOA) estimation [1, 2]. In this
Letter, the performances of the WSF and the deterministic ML
methods without using minimising techniques are studied and
compared when used to super-resolve coherent sources. It is
assumed that the number of multipath components are known,
and the WSF and deterministic ML methods are used to estimate
the multipath arrival times in computer simulated wireless chan-
nels and experimental wireless channels generated inside an ane-
choic chamber. Studies have shown that, without using the
minimising techniques and when all the sources are coherent, the
WSF and the deterministic ML methods achieve the same results.

Problem formulation: A wireless channel can be expressed in com-
plex equivalent lowpass representation as

K
h(t) = hiel®6(t = T;) +n(t) (1)

where &(.) is the Dirac delta function. A, 6, and T; are the scalar
multipath gain, phase and arrival time, respectively, corresponding
to the ith multipath component. n(¢) is AWGN and K is the
number of the multipath. From eqn. 1, the channel frequency
response, sampled at L equal frequency intervals Af can be
expressed as

K

S(f) = hie’ exp(—j2r fil;) + N, for 0<I<L

=1
(2)
where f; = f, + IAf, N;is AWGN at frequency f; and £, is the small-

est frequency component. eqn. 2 can be written as a matrix equa-
tion as

S=Ab+n (3)
where S = [S(L)SH) SO, b = [he® he® - he®|T and A con-

sists of the remaining exponential terms in eqn. 2. The output cov-
ariance matrix R is

R =(55*) ~ AAA + 07T (4)

where A = (bb*), (-) denotes the ensemble average, * denotes the
complex conjugate transpose, I is the identity matrix and o2 is the
power of AWGN.,

If the channel frequency response at each frequency f; is treated
as the signals received by an uniform linear array (ULA) sensor
element and the multipath arrival time as a source direction-of-
arrival (DOA), then it can be realised that eqn. 3 has the same

form as [1, 2] and, hence, the WSF and the deterministic ML
methods can be used to super-resolve the multipath components in
a wireless channel.

Super-resolution ‘methods: In this Section, the super-resolution
methods based on ML and WSF for resolving the coherent
sources in the wireless channels are described. To compare their
resolution performances, it is assumed that the number of sources
is known.

(i) Deterministic maximum likelihood (ML) method: For the deter-
ministic ML method, the desired sources are regarded as unknown
deterministic data [1]. The optimal solution for eqn. 3 is then
determined by nonlinear multidimensional searching for either of
the two functions

min|$ — AT (5)
or

max tr{PA(T)R} (6)
over the multipath arrival time estimates T = {7, 75, ..., T}

where P(T) = A(T)(A#(T)A(T))'A#(T) is the projection matrix, H
denotes the Hermitian conjugate, tr{-} is the trace of the bracketed
matrix, ™ and ™&* are the minimisation and maximisation of the
problem, respectively.

(it) Weighted subspace. fitting (WSF) method: Theoretically, the
output covariance matrix R in eqn. 4 can be eigendecomposited as

R = EAE! +0°E, B (7)
where A, = diag{A,, A,, ..., A¢} is a diagonal matrix of real eigen-
values corresponding to the signal subspace vectors E, such that A,
>N > .. > A > 02 >0, and E, are the noise subspace vectors.

For WSF, the optimal solution is determined by minimising the
function

mqin tr{P4(T)E,WE*} (8)

where

o 2 .

W= (&, -671) A (9)
with 2 and A, being the noise power and the eigenvalues of the
signal subspace estimated from the output covariance matrix R,
respectively.

In practice, the eigenvalues from R are generally all different
and so separating the eigenvectors into signal and noise subspaces
becomes very difficult. However, when the sources are coherent,
the first eigenvalue A, is usually much larger than the rest of the
eigenvalues (ie. A >4, > ... > A;). Hence, A, is the largest eigen-
value A, the signal subspace E, is its corresponding eigenvector
and & is simply the average of the remaining eigenvalues (A,, A,
.s Ap). Consequently, from eqn. 9, W becomes (A, — 6 )PA7" = A,
= A, because A, >> 62 and so BAK = R. Therefore, the result
obtained from the WSF method is ™ (P (T)E,WE,} =~ it
{P (T)R} which is same as eqn. 6 obtained from the determinis-
tic ML method.

Table 1: Multipath arrival times in nS obtained from ML and
WSF in computer simulated channels at different SNRs

SNR [dB] 40 30 20 10 00
10, 30 10, 30 12, 31 9,27 15, 17

ML 10, 31 11, 31 12, 29 3,29 6, 8
16,46 16, 50 18, 50 26, 28 1,13
10, 30 10, 30 12, 31 9,27 15, 17

WSF 10, 31 11, 31 12, 29 3,29 6,8
16, 46 16, 50 18, 50 26, 28 1, 13

Upper, middle and lower entries are, respectively, BW = 2500, 1875
and 1250kHz at different SNR

Simulation channels: Assuming that the number of the multipath
components is known, the WSF and ML methods are used to esti-
mate the multipath arrival times in computer simulated wireless
channels. The channel frequency response data is simulated for
bandwidths of 2500, 1875 and 1250kHz at 125kHz frequency
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