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Further Results on the Minimuni Variance
Time-Frequency Distribution Kernels

LJubiSa Stankovi¢ and Veselin Ivanovicé

Abstract— Results for the minimum variance kernel, presented by
Hearon and Amin, for the complex Gaussian white noise with independent
real and imaginary parts remain valid for real noise and approximately
valid for analytic noise. These results are extended to the real and analytic
noisy signals cases.

1. INTRODUCTION

The influence of complex noise, with independent real and imag-
inary parts, on the Cohen class of distributions is analyzed in [1]
by Hearon and Amin. Of the Cohen class of distributions satisfying
marginal and time-support conditions, with respect to the noise influ-
ence, it has been shown that the Born—Jordan distribution is optimal.
In this correspondence, we will extend the analysis from [1] to two
very important types of noise: real and analytic. From this analysis, it
will be shown that the results and conclusions obtained in [1] remain
valid with respect to these two forms of noise. In the second part of
the correspondence, Amin’s recent results for the noisy signal case
[2] are extended on the real and analytic noisy signal forms.

II. NOISE ANALYSIS

The discrete time form of the Cohen class of distributions, for
signal z(n), is given by [1]-[3]
o0 o0

Colmwie)= 3 3

k=—0c0 m=—oc0
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Fig. 1. Variance in the case of complex noise with independent real and

imaginary parts for 1) Born-Jordan distribution, 2) optimal auto-term dis-
tribution, 3) Choi-Williams distribution, 4) Butterworth distribution, 5) sinc
distribution, and 6) pseudo-Wigner distribution.

X z(n+m+ k)" (n+m —k)e 2k, )

Let us suppose as in [1], that z(n) is a Gaussian noise with

variance 01 The variance of the Cohen class of the distributions’
estimator ¢%(w) = var[Cs (n, w; )] is given by [1], [2], [4]

RPN SN Oy
p(ma, k)" (mo, ko)

X [Ryp(mi —ma 4+ k1 = kg)

- Ryi(m1 —ma — ki + k2)

+ Reex(my —mo + k1 + k2)

me — ki — ka)le

where Rz, (m) is the autocorrelation function of z(n).

X Rx*x(ml - —i2w(kL—ka) (2)

A. Complex Noise

Assume complex white Gaussian noise z{n) with independent real
and imaginary parts having equal variances ¢2/2. The variance of
the Cohen class estimator has been derived in [1] in the form

> > lelm )P 3)
k=—o0 m=—oco
The values of variance (3) for common distributions belonging to the
Cohen class are presented in Fig. 1. In this figure, as well as in all
further numerical illustrations, we used the following notations:

* Born—Jordan distribution ¢(©, 1) = s1n(®r/2)/(®7/2)

+ Choi—Williams distribution ¢(®,T) = gm0

+ sinc distribution ¢(0,7) = rect(@r/a)

+ Butterworth distribution ¢(©,7) = 1/(1 4 (©7/(61m: )

+ optimal auto-term distribution ¢(®, 1) = e~197179 [5]

+ pseudo Wigner distribution with the Hanning window.

Kernels are given in the analog ambiguity domain. Discretization
is done taking the range [@] < /&N and 7| < V7N with
N = 32. Kemel @(m,k) is calculated as a Fourier transform
e(m, k) FTylc(0, k)], where c(8,k) are samples of ¢(0,7)
along 7, and # is discrete-domain frequency ¢ = ©(zx/v/aN). In
order to compare various distributions, their parameters (o, o, 6171)
are chosen according to the results in [5]. In [1], it has also been
shown that variance (3) is minimal (under the marginal conditions
and time support constraint) for the pseudo Born—Jordan distribution,
i.e., the pseudo Born-Jordan distribution is optimal with respect to

1053-587X/97$10.00 © 1997 IEEE
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Fig. 2. Variance in the case of real noise for 1) Born—Jordan distribution, 2)
optimal auto-term distribution, 3) Choi—Williams distribution, 4) Butterworth
distribution, 5) sinc distribution, and 6) pseudo-Wigner distribution.

the variance under the described conditions. This is in complete
agreement with the numerical data in Fig. 1. It is noteworthy that the
distribution derived in [5] as optimal with respect to the auto-term
form behaves in this case (as well as in the others that follow) almost
exactly as does minimum variance distribution kernel (Born—Jordan
kernel).

B. Real Noise

We now consider a real noise xz(n) with variance o2. In this
case, variance (2) contains all terms. After some stralghtforward
manipulations (the same as in [1], [2], and [4]), it may be shown
that the variance of the Cohen’s class of distributions in the case of
a real white Gaussian noise may be written as

02 (W):(T;l Z Z “(p(m, k)|2+@(m, k)(,o* (m, _k)e—j4wk].

k=—occm=—oco
)

The above variance consists of two parts. One part (frequency
independent) is the same as in (3). Thus, by minimizing (3), we
also minimize this frequency-independent part of the variance. The
other part of the variance is the sum over m of the Fourier transform
of ¢(m,k)p*(m,—k) over k. For distributions that are symmetric
with respect to k, it holds that p(m, k) = ¢(m,—k). This is the
case for all known reduced-interference distributions. The Fourier
transform is therefore applied to.the positive and even function
l¢(m, k)|>. The transform’s maximal value is reached at w = 0,
and w = nm/2(n = £1,42,. ). Accordingly

Z Z lo(m, B)[? (5)

k=—0co m=—cc

max{o*(w)}

Thus, by minimizing (3), we minimize the maximal value of the
second (frequency-dependent) part of variance (5) as well. This means
that the conclusions drawn in [1] remain valid in the case of the real
noise. The estimator variances, for the commonly used distributions,
are presented in Fig. 2 for real noise.

C. Analytic Noise

Commonly, in the numerical implementation of the quadratic
distributions, an analytic part of signal is used rather than the signal
itself. Here, we present the noise analysis if the noise is analytic. It
may be written as 2, (n) = z(n)-+jzs(n), where & (n) is the Hilbert
transform of xz(n). The autocorrelation function of analytic noise
za(n) is given by Ry, (k) = 2(Ruz (k) + j Reu (k) % h(k)), where
h(k) is the impulse response of the Hilbert transform. The spectral
power density of z,(n) for the white noise z{n) is Sy, ., (w) =
202U (w), |w| < w, where U(w) is the unite step function. From the
results in [1], [4], and (2) and using the fact that R.:,, (k) =
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R.,.: (k) = 0, the estimator variance is
klz—oé kg=—00 Mmi=—00 Mmg=—00
’ 99(m1a kl)‘fO*(mzv kz)

ma + k1 — ko)

— ma — k’l + kg)]e

After some transformations (see the Appendix), we get the variance
in the fo]lowing form:

X [Repe, (M1 —

x R}, (ms TR

[20— 5!

V(0,8)|” de df  for |w]| < — (7

o (w) = 27r2
where W(#,w) is the kernel function in the frequency—frequency
domain ¥(8,w) = FT,, 1[w(m, k)], and the integration limits are
of module 27 form. The kernel ¥(§,¢) is mainly concentrated at
and around the (6,¢) origin and £ = 0 axis; see Fig. 3. With this
in mind, as well as the fact that |¥(6,£)|® is always a positive
function, we may easily conclude that the maximal value will be
obtained for |w| = w/2. This value is very close to the value
obtained by the integration over entire region #,§ € (—m,n]. The
difference is equal to the integral outside the rhombus shown in
Fig. 3. For example, for the Born-Jordan distribution, all vaiues of
[¥ (8, €)|? outside the integration region for |w| = 7/2 are less than
0.002 max{|¥ (8, £)|*}, and thus, the difference of the integral over
this region and the entire (¢, £) plane is of 1% order. This is shown
in Fig. 4, where the variance (7) is depicted for various distributions
along with the values obtained by the integration over the entire (4, §)
region (see the dotted lines on the right-hand side). According to the
previous analysis, we may conclude that by minimizing (3), we also
minimize the maximal value of (7), which is approximately equal to

//_riwm dé o
4y Y

k=—0c0 m=—co

The above equation is obtained using Parseval’s theorem, as well as
the fact that ¥(#,w) is a two-dimensional (2-D) FT of the kernel
function in (m, %) domain. From (8) and the above analysis, we
may conclude that the kernel that minimizes (3) also minimizes the
maximal value of (7), which is given by (8). This further means
that the Born—Jordan kernel remains optimal, under the assumed
conditions, with respect to the variance maximal value.

Since the Born—Jordan distribution appears to be a key distribution
from the point of noise influence, its variance values (3), (4), and (7)
are checked statistically and presented in Fig. 5. Averaging is done
over a set of the distribution values calculated at 2000 time instants
with the same numerical data as in Section II-A. Agreement with
theoretical data is very high.

—|2w— €|

max{o”(w)} &

olm, k)%, at|w| = g 8)

III. ON THE NoOISY SIGNALS

The analysis of the noise influence in the case of deterministic sig-
nals corrupted by noise is very difficult and highly signal dependent.
This is the reason why reasonable results may be obtained only under
some constraints imposed on the considered signals. In [2], Amin has
shown that the results from [1] may be easily applied to the case
of noisy frequency-modulated (FM) signals. In this section, we will
generalize the results and conclusions from Section II, considering
real noisy signals as well as analytic noisy signals. Let us assume a
deterministic signal f(n) in additive white Gaussian noise v(n), i.e.,
z(n) = f(n) + v(n). The variance of the noise will be denoted by
05. In this case, it can be easily shown [2], [4] that the distribution
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Tlustration of the variance calculation in the case of analytic noise for the Born-Jordan distribution (top) and Choi~Williams distribution (bottom):

The contours of |®(6,&)|? (right hand-side) are plotted at each 0.002 max{|T(6,£)[*}.

estimator’s variance consists of two components:

0¥ (@) = 0f, (W) + 07, (). ©)
The component 67, (w) depends on both the signal and additive noise,
whereas the other component (o2, (w)) depends on the noise only.
The later is exactly equal to the variance described in Section II for
all three cases and is given by (3), (4) and (7) for complex, real, and
analytic noise, respectively (replacing o2 by o). Therefore, we will
focus our attention only on the signal dependent component a?,, (w),
which can be written in the form

2

el

>

mo=—0c0

A= Y%

ki=—o0 kg=—o0 mi=-—0co
“p(ma, k)" (ma, ka)
X [f(n -+ mi1+ k) (n+ ma+ ka)
- Ry, (my —ma — ki + ka)
+ f (n+m1— k) f(n+me— k)
« Ruy{mi —mg + k1 — k2)
+ fn+mr+ ki) f(n+me —k2)
. RV*V(ml —mg — ki — kz)
+ f (n+my = k) (n+me +ka)
X Ruws (s — ma + k1 4 E2)]e 7217420 (10)
In this section (as in [2]), we will minimize the mean value of variance

o*(w)
/2
[—7\"/2

o (w) dw. (11

(]

0
-/2

0 /2

Fig. 4. Variance in the case of analytic noise for 1) Born—-Jordan distribution,
2) optimal auto-term distribution, 3) Choi~Williams distribution, 4) Butter-
worth distribution, 5) sinc distribution, and 6) pseudo-Wigner distribution.
Dotted lines at the right-hand side represent the kernel energy values.

The mean value will be used, rather than the exact variance value,
since exact variance analysis would require a complete knowledge
about the signal f(n) and would be completely signal dependent
and, consequently, inappropriate.

A. Complex Noise

Assume, as in Section II-A, that the complex noise v(n) contains
independent real and imaginary parts, with variances 02/2. The
mean variance 0%, (w) is derived in [2] for the case of FM signals
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f(n) = Ae?®(™) g5

0%, (w) = 24%52 i i
k=—occ m=—co

and consequently, the mean variance of the Cohen class of distribu-
tions [2] becomes

o?(w) =

(12)

Ca 40l 3 Y lelm
k=—00 m=-—c0

According to this expression, it is easy to conclude that by minimizing

(3), we minimize (13). Thus, as shown in [2], the conclusions from

[1] remain valid for the mean variance value in the case of complex

noisy FM signals as well.

(13)

B. Real Noise
In this case, the mean value of the variance in (10) takes the form

0%, (w) =0%,(w)

|complex signal4noise

DD DY

k=—o00 mi=—00 mp=—00

“p(ma, k)™ (ma, k)

X [f(n+mi+k)f(n+ms—k)

-8(m1.— ma — 2k)

+ f(n+my — k)f(n+ ma+ k)

8(my — ma + 2k)]. 14)
Assuming that the signal absolute value is always less or equal to
Alf(m)] < A

|‘T]2fu( w)| < I‘Tfu (w)|complex 51gna1+n01se

+A20§ Z Z

k=—co m=—oc0
[l (m + 2k, k) (m, k)
+ |p(m — 2k, k)" (m, k)] (15)
or, finally! with ©(m, k) = o(m, —k)
o3, (W) < 44%2 > D" Jp(m, k) (16)

k=—co m=—oco
We have also searched for a more precise expression than (16) since
the minimization has more sense if applied to closer expression to the
exact one (the inequality in footnote 1 may be far from the equality
for common distribution kernels). Note that in the second part of
variance (15), we have 32 S%°__ _ [le(m+2k, k)™ (m, k)| +
lp(m — 2k,k)<p*(m,k)|] which, for ¢(m,k) = ¢(m,—k), sim-
plifies to 23>°72 > |e(m — 2k, k)¢™(m, k)|. Knowing
that (m, k) is mainly concentrated at the origin and around the %
(m = 0) axis (for all reduced interference distributions and Wigner
distribution), we may conclude that

23 S Jp(m =2k, k)" (m, k)

k=—co m=—oc
22 % Je(m,0)]" = 2/p(0,0) . a7)

For all distributions, satisfying frequency marginal property, this is
a distribution-independent constant. Approximation (17) has been
checked out for all considered distributions and found that the error
is less than 1.5% of 2372 _ 3> lo(m,k)|*. Thus, we may

! For any function y(m, k), using the Schwartz inequality, we have
oo >0
> lptmta,B)e(m B < S le(m, k)
m=—0o0 m=—0o0
where equality holds for |p(m + a, k)| = c|p(m, k)|, with a and ¢ being
arbitrary constants.
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Fig. 5. Variances in the Born-Jordan distribution obtained theoretically
(thick lines) and statistically (thin lines) for (a) complex noise with inde-
pendent real and imaginary parts, (b) real noise, and (c) analytic noise.

write the upper bound of the variance for the real noisy signal as

03, (w) < 2A202< > Z 2 4 |90,0)] > (18)

k=—0c0 m=—cc
The equality sign [with approximation (17)] holds for signal f(n) =
A. The conclusion is the same as the earlier conclusion; minimization
of the maximal possible value of (18) is achieved by minimizing
T2 B__ o |e(m, k)|?, which again reduces to the very well-
studied factor and results presented in [1] and [2].

C. Analytic Noise

The analytic part of noise will be denoted by v,. According to
(10) and the fact that R, (m) = R.x.,(m) = 0, the mean of the
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Fig. 6.

signal-dependent part of the variance is given by

Z Z {e(m, k)f(n+m+ k)

k=—o0 m=-—o00

X [o(m, k) f(n +m + k) #m Ryov, (m)]"

+o(m, k) f (n+m—k)

x [p(m, k)" (n+m = k) % Ry (M)} (19)
where #,, denotes a convolution over m. Using Parseval’s theo-

rem’ on both terms (with underlined forms as entities) after some
straightforward manipulations, and using the facts that

|o(8, k) %9 (F(e’®)e?? 0T 2
= |[¢" (=8, =) %5 (F(e?7) TP

and Sy, (8) = Suyv,(0), we get the mean of variance ot (w) in
the following form‘

7 Z [ .80 FEOS S, )Y

T 20)
where F(e’*) = FT[f(n)], and c(6,k) = FTu[p(m, k)] is the
kernel in the ambiguity (4, k) domain.

Applying the Schwariz mcquahty on the convolution over § and
using

Ufy(w =

™ o
/ le(8, &) do =27 > l@(m,k)*, and

m=-—o0

iﬂ/ / |F(e’ )| df dp = wE5
Q0 -7

2The 1-D Parseval theorem follows
o0

> et = o [ Xy
k=—o0

where X (e7*) = FTy[z(k)] and Y(ej“’) =
3The Schwartz inequality f0110w5'

/a z(t)w b atl / ()2 dt/ lw(®)]? dt.

FTily(k)]

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 6, JUNE 1997

-7

Tilustration of the integration domain in the case of analytic noise.

as well as
Syov, (8) =202U(8) forlf|<m

we get

o(m, k).

02, (w) < 20, E; fj i

k=—oc0 m=—o0
This is a general expression, which for some signals may not be a
close approximation. More specific variance forms may be obtained
for specific signals. Such signals will be considered in the sequel.
Since f(n) is analytic, F(e’®) = 0 for §<0. Assuming that
c(8, k) xg (P(e?®)e?"TR)) is completely concentrated in § > 0,
we get, for analytic signals of the form f(n) = Ae’ o)

Jj%y(w) = 4A%2 i i

k=—oc0 m=—c0

21

p(m, k)? 22)
using
|c(8, k) %o (F(7)e?* 92

> >3
Z Z W(mlak)¢*(m2’k)
M]=—00 My=—00
X f(n+m1+ k) F(n+mg + ke i0m1mme)
and the fact that integration over ¢ from 0 to 7, in this case, is equal
to the integration from —7 to 7. Note that the previous assumption
is close to the real situation for the reduced interference distributions
when the signal’s Fourier transform F'(e’?) is not near the ¢ axis (in
order to avoid convolution values for # < 0). We should mention that
we cannot completely avoid convolution values for § < 0, at least for
k = 0 when ¢(8,0) = 1. Having this in mind, we would get the mean
variance as (22) minus A?c2. However, this factor is significantly
smaller than (22), and therefore, we do not,make any significant error
leaving (22) as it stands. In order to determine the bounds, including
the cases when a significant part of the convolution energy is in
the region § <0, consider a simple signal form f(n) = Aeiwom,
In this case, |c(8, k) o (F(e??)e?® N2 = A%|e(f — wo, B)*. If
wo — -0, then the integrand in (20) tends to A?|(8, k)|*. Having
in mind that |c(8, k)|® is symmetric with respect to §, we get that
0%,(w), in this case, is equal to the half of the value given by (22).
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The same result will be obtained for wy — m—0. The maximal value
will be obtained for wo — /2 when it is approximately equal to
(22). Thus, depending on the analytic signal form, we have

24%2 3 Y Je(m W <7 ()

k=—oc0 m=—co
<4400 Y D) Jelm, k)% (23)
k=—o0c0 m=—oc0

We have seen that the upper limit (22) is true for any FM analytic
signal, whereas the lower limit holds with the assumption that the
part of energy of c(8, k) *o (F(e?%)e?*" %)) located in the region
6 € [-m,0) is less or equal to the one in # € [0,7). This is a
reasonable assumption since F'(e’?) exists only for 8 € [0, ), and
¢(6, k) is symmetric around the 6§ axis.

This means that in minimizing (3), we also minimize the maximal
possible value of the mean of the signal-dependent part of variance
in the analytic noisy signal case (21) or the bounds within which the
mean variance may take its values for different FM signal forms (23).

It is interesting that for the Wigner distribution, the energy of
c(8,k) %o (F(?®)e?®™+h)) is always symmetric with respect to 6
since ¢(#,k) = 1. Thus

ok, (w)=24%, > > fe(m, k)P

k=—oco m=—co

* for any signal of the form f (n) = Ae’*™ 1In addition, from (20), we
may easily get the exact average variance for the Wigner distribution
for any analytic signal as JJ%U (w) = 2062E;,, where E; is the energy
of an arbitrary analytic signal f(n) (for f(n) = Ae’®") these
two expressions are equivalent, keeping in mind that for the Wigner
distribution, @ (m, k) = 8(m) within a bounded region in the (m, k)
domain [4]).

IV. CoONCLUSION

In this correspondence, we have shown that the results for mini-
mization of the time-frequency distributions’ variance, obtained for
the complex noise and noisy signals with independent real and
imaginary noise parts, may be directly applied in the other two
very important cases of real and analytic noise and noisy signals
since-the key factor in minimization (the energy of a time-frequency
distribution kernel function) remains the same in all of these cases.

APPENDIX

Variance (6), using substitutions k1 — k2 = k. ki = ki and
mp — M2 = m,m = My, may be written as

Uz(w) = Z Z [99(m7 k) * *m,k@*(_m> -k)]

k=—00 m=—co

X Royz,(m+ k)RS, (m — k)e 2% (24)

where xx,, 3 is a 2-D convolution over m and k. Considering the
above expression as a 2-D Fourier transform over m and k, at § = 0
and @w = 2w with

\II(H,w) :FTm,k[SO(mvk)]a
\I’*(evw) ZFTm,k[‘p*(_m7 -—k)],
Q(ng) :FTm:k[Rzaxa (m + k)R;aZa (m - k)]

and

we get
o (W) = {|¥(0, @) * #2600, @) }omo, w20 (25)

Since the spectral power density of analytic noise has the value
Seawa (W) = FT[Reys, (k)] = 202U (w),

for |w| < m
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we get
Q8, @) =167 02U (w)6(w — 8) * % sU(w)8(ww + 6)]. (26)

Convolution (26) is illustrated in Fig. 6. Note that

//‘ 5(c — 0)5(w + 8) dw df = L if (6, ) = (0,0)
D

belongs to the integration domain D and O otherwise. According to
this result and Fig. 6, (25) assumes the form

4 ™ |2w—¢€|
tw=gs [ [ we.orss <]

[2w—¢]

27

where the integration limits should be considered as module 27
quantities; see Fig. 6.

Variance Mean Value

The mean value of variance (6) is given by

Y2 Y elmuk)e (mak)

k=—o00 mj=-—o0 mo=—oco

X [Reyzo(my — ma)Ry ., (m1 — ma)]

= Z Z w(m, k)p(m, k)%,

k=—o0c0 m=—co

0% (w) =

(B e0 (M) B gy (m))]” (28)
and using Parseval’s theorem, we get
BT O';L - " 2
=% 3 [enfE-pha 9

k=-—o0

Since the factor [T _ |c(8, k)|#]8| d8 may have significant value with
respect to [T |c(8, k)|? dé, this expression could not be reduced to
the previously studied forms. However, this very simple expression
may be used to check the results. For example, for the pseudo-Wigner
distribution, this factor is equal to otE,, where E, is the energy
of the window in the k domain. For the unite variance noise and the
Hanning window of width V = 64, we get 0?(w) = 24; see Fig. 4.
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