forj=1tom’ do

S « M, O
6 = LS
Step 2:

find S, (1 <k <wm’y such that
¢, = MIN{¢y, Gy ooy G}l
min_set < S;;
mid_switch < mid_switch U {k};
if min_set # ¢ then
forj=1tom’ do
S; < S, ™ min_set
until min_set = ¢;
Step 3:
connect I, through the middle switches in min_swirch and
update the destination sets of these middle switches.
End

Conclusion: In ATM networks, a call should be set up within a
short time. However, the CAC mechanism needs to check each
link and node along the path to decide if a call can be accepted.
This may lead to an unacceptable call setup delay since there may
be many internal links between a pair of input-output port within
a switch. If the CAC mechanism only needs to check the status of
external ports, the call setup time can be reduced. In this Letter, a
wide-sense non-blocking multicast ATM switch is designed, based
on the Clos network. Using this switch, the external link utilisa-
tion is very high. By the path-establishing algorithm presented
here, the number of required middle stage switches is significantly
reduced, compared with the number required in strictly non-block-
ing multicast switches.
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Special purpose hardware for time
frequency analysis

D. Petranovi¢, S. Stankovi¢c and L.J. Stankovid

Indexing terms. Time-frequency analysis, Computer architecture

A special purpose hardware system for time-frequency signal
analysis is presented. This system is based on the S-method which
has the significant advantage of using the short time Fourier
transform as an intermediate step in its implementation. The
hardware designed for a fixed point arithmetic is well-structured
and suitable for VLSI implementation. An example including an
error analysis is also provided.

Introduction: Time-frequency signal analysis is used for signals
whose frequency changes with time, in applications where a time
distribution of frequency content is of interest. The important
applications, among others, include radar, sonar, seismic and
speech signal analysis, [1]. The short time Fourier transform
(STFT) is the simplest tool for time-frequency analysis, and has
been conventionally used for that purpose. However, its serious
disadvantage is low concentration in the time-frequency plane
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which may be inconvenient in many applications. Various quad-
ratic distributions, the most important of which is the Wigner dis-
tribution, have been used to improve the resolution, [2, 3]. The
Wigner distribution generally gives a better concentration than the
STET, but it produces cross-terms in case of multicomponent sig-
nals which limits its applicability. Significant research and effort
has been made to reduce the cross-terms effects [2, 3]. The recently
proposed S-method [4 — 7] reduces or completely eliminates cross-
terms without sacrificing the high resolution of Wigner distribu-
tion. In addition, it establishes a clear relationship with the STFT,
which has been well studied and understood and has been used for
many years.

Increasing demands for high speed real time applications of the
time-frequency analysis require an efficient hardware implementa-
tions of developed algorithms. The fact that the S-method uses the
STFT as an intermediate step, for which the hardware implemen-
tations already exist, makes this method very attractive for imple-
mentation. In this Letter we present an architecture and hardware
design for VLSI implementation of S-method. For efficient ASIC
implementation, complete hardware for the S-method based algo-
rithm, which includes the STFT implementation, has been devel-
oped.

Review of S-method: The short-time Fourier transform (STFT) in
a discrete form is given by [2 - 5, 11, 12, 14, 15]

N2
;27

> fln+iw@e FE (1)

i=—N/2+1

STFT(n, k) =

The Wigner distribution (WD) in the discrete domain is defined by
2, 3]:

N/2

S i) fr i iwliw(—i)e I

i=—N/24+1
2)

where w(i) is a real window. Based on the relationship between
STFT and WD, established in [4], the S-method is derived as:

SM(n, k)= SPEC(n,k)
Lg

+2Y Re{STFT(n,k+i)STFT*(n,k —i)}
- ®)

where L, is a width of the rectangular frequency domain window.
Denoted by SPEC(n, k) is the squared modulus of the STFT
called the spectrogram. Through a suitable selection of the win-
dow width (L), it is possible to obtain the auto-terms of multi-
component signals such that they remain unchanged with respect
to the WD, while the entire elimination (or reduction) of cross-
terms is achieved (more details on this window may be found in
[4 — 9]). It can be observed that: (i) for L; = 0 we get the SPEC,
and (1) for L, = N/2 the WD follows (in this case the last summa-
tion term should be divided by 2).

WD(n, k)=

Implementation: In this Section, we present a system for the S-
method implementation. The proposed architecture consists of
two blocks. The first block is used for the STFT implementation
and the second block is used to modify the STFT in order to
obtain the improved distribution based on the S-method. The
STFT can be implemented using available FFT chips or the
approaches based on the recursive algorithms. The design pre-
sented here is based on the recursive algorithm [4, 11, 12] which is,
due to reduced hardware complexity, more suitable for VLSI
implementation. Assuming a rectangular window w(i) the STFT
can be written as:

STFT(n,k) =[f(n+ N/2) — f(n— N/2)](-1)*

_ 4
+ STFT(n—1,k)e?mk/N ®)

A complete system consists of N channels described by eqn. 4,
with £ = 0, 1, 2, ... N-1. For the cases of a Hanning or Hamming
window w(i), the short time Fourier transform is obtained by
modifying STFI(n, k) in eqn. 4 as STFTy(n, k) = a,STFI(n, k1)
+ qoSTFI(n, k) + a,STFT(n, k+1), where the coefficients a_,, aq, g,
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are: (0.25, 0.5, 0.25) or (0.23, 0.54, 0.23) for the Hanning or the
Hamming window, respectively [4, 5, 12].

Each channel described by eqn. 4, involves complex multiplica-
tion and can be separated in two sub-channels involving only real
computations. To describe these channels, we modify eqn. 4, sepa-
rating real and imaginary parts into two sub-channels as:

STFTRe(n, k) = F(n)(=1)* + c(k)STFTgr(n —1,k)
— s(k)STFTr,(n—1,k) )
5
STFTrm(n, k) = c(k)STFTim(n — 1,k)
+ s(k)STFTg.(n—1,k)
where STFTy(n, k) and STFT,,(n, k) are the real and imaginary
parts in STFI(n, k), respectively, and c(k) = cos(2mk/N); s(k) =
sin(2nk/N); F(n) = fin + N/2) — fin — N/2). Now, egn. 3 can be
written as:
SM(n, k) = |STFT(n, k)|
La
+2>  STFTre(nk+i)STFTr(n,k — i)
=1
Lg
+23 " STFTrm(n, k +i)STFTym(n, k — i)

i=1
(6)

which is the equation used to modify the outputs of STFT block
in order to obtain the S-method based distribution.

BLOCK |

Fig. 1 Hardware for S-method realisation (on; channel with L, = 2)

The hardware necessary for one channel implementation (with
L, = 2) is presented in Fig. 1. It has been designed for a 16-bit
fixed-point-arithmetic. The total number of multipliers is 2(L,+3)
and the total number of adders is 2(Z,+2). The multiplication
operation results in two-sign-bit and, assuming Q15 format (15
fractional bits), the product mast be shifted left by one bit to
obtain correct results. This shifter is included as a part of multi-
plier. The throughput of the system is N. The longest path is the
one that connects the register storing STFT(n-1, kxL)), through
two multipliers and L,+3 adders, with the output SM(n, k). This
path determines the fastest sampling rate. It can be observed that
the S-method implementation introduces only an additional delay
of L, adders compared to the spectrogram implementation. Thus
the fastest sampling rate is essentially the same for both implemen-
tations. This design can be implemented as an ASIC chip to meet
the speed and performance demands of very fast real time applica-
tions.

Error analysis and example: The use of finite word length registers
in the implementation introduces two types of errors: a signal
quantisation error and a multiplication error. It is assumed that
the signal is properly scaled to avoid an overflow. The quantisa-

tion error can be modelled by an input additive noise. In this case -

we have f{n) + e(n) at the input instead of f{n). Mathematically
this reduces to a well known situation of noisy signal [9, 13] with
distribution variance

La

N2g4 No? .
2 e %o S SPECi(nk+i) (7)
=—Lg "

T 2L 1 RLat 12,

where 62 = 2%/12 is the quantisation noise variance [10]. Note
that for spectrograms of order 1 and No2 << 1, this expression is
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of order Nol /(2% + 1) = N2»/(12(2L, + 1)?). For example, for
N=64b=16and L, =2, 2is of order 2-*.

The multiplication error g(n) due to the quantisation of product
STFI(n-1, k)e*™ ¥, in eqn. 4, has the variance 62 = 2%/4 [10].
This error accumulates with each iteration. After M iterations its
variance is of order Mc?. For extremely large signal sequences
(for our example, with b = 16, large M means M > 10°) we have
to use either hardware with wider registers or we need to compen-
sate for the accumulation error. Note that the proposed two-block
solution has built in flexibility, which allows us to use any availa-
ble hardware for the Fourier transform realisation. Namely, the
first block for the STFT calculation (Fig. 1) can be implemented
with the FFT based algorithms, instead of the recursive one. In
that case, the accumulation error would be avoided and kept in
the order as in eqn. 7.

SPECTROGRAM

S:METHOD

Fig. 2 Time-frequency analysis of seismic signal

a Spectrogram, b S-method with L, = 2

The proposed architecture is simulated with 16-bit registers on a
real seismic signal. The results obtained with the spectrogram and
the S-method are presented in Fig. 2. It can be seen that the con-
centration improvement is high for a very small L, = 2.

Conclusion: Special purpose hardware has been designed to imple-
ment the S-method based algorithm for time frequency signal
analysis. The hardware is well structured and suitable for VLSI
implementation and can be run with a clock of essentially the
same frequency as the one for the spectrogram implementation
system. The error analysis, which can be used for appropriate
hardware selection, is presented.
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Iterative boundary condition (IBC) in finite
difference solving scattering problems of
open region

Luo Yong-Lun and Luk Kwai-Man

Indexing terms: Numerical methods, Finite difference methods,
Electromagnetic wave scatter

A novel truncation boundary condition, the iterative boundary
condition (IBC), is proposed for finite difference (FD) solving
electromagnetic scattering problems. The iterative process of this
condition is given. Solutions of the IBC for some 2D cylinder
scattering problems have been obtained and are compared with
solutions using MoM [1} and MEI [2]. These solutions show very
good agreement.

Introduction: The FD method is a basic method for electromag-
netic scattering problems. A proper truncation boundary condi-
tion must be addressed for the exterior layer nodes. In the past,
ABC [3] and MEI [2] have been successfully applied as a FD mesh
truncation method. In this Letter, we present the concept of IBC
to truncate the FD mesh layer. This novel truncation boundary
condition is expressed by an equation of fields at the exterior layer
node and its immediately inner layer node. An iterative process is
used to find the IBC coefficient and solution of the scattering
problem.

E orH
; &p
k
perfectly conducting object

Fig. 1 Conformal FD mesh for IBC recipe

Theory: Consider the electromagnetic scattering problem of a 2D
perfectly conducting object, as shown in Fig. 1. The FD method is
used to calculate the scattered field of this problem. A conformal
mesh is generated. Let the surface induced current be J( 7). Node
¥, is on the exterior mesh layer and node 7 is the immediate
inner node of 7, Let the scattered scalar fields at these two nodes
be ¢( ) and ¢(#). For these two fields, we can find a coefficient
A7 0(F) Whlch satisfies

B(7) + A7) B() =0 )
AFLT) = g )
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where ¢(7) = $eo J(¥G(F, 7" ")dl, cy is the cross-section bound-
ary of the cylinder and G(7,7”) is the Green function. Eqns. 1
and 2 are the field equations of these two nodes. A(7, 7)) is 4
coefficient that not only exactly reflects the field relation of ¢(7)
and ¢(7’;), but also embodies the information of location, object
geometry and induced current source.

To obtain A(7,, 7)) for all nodes (7 = 1, 2, ..., N) on the exterior
layer, an iterative process is used. N is the total number of nodes
on the exterior layer. The process of IBC starts with setting an ini-
tial trial current J°(#”) on the conducting surface. The field radi-
ated by J(7*) at node 7, is made to be related to the field at its
immediate inner node r, by eqn. 1. A(r, 7)) is calculated from
eqn. 2. A(¥, 7)) is used as the newer field relation coefficient or
truncation BC for the exterior layer nodes. We simulate the new
field value ®!(¥) for node 7, from eqn. 1 as:

QM7 + A(7, 7)1 () = 0 3)

By applying FD equations of interior mesh nodes, a sparse equa-
tion for the whole scattering problem is then set up. By solving
this sparse equation, the scattered fields at “all mesh nodes are
obtained. Using these field values, a new value of induced current
JY(7") could therefore be calculated.

Using J'(7") as the new trial current and repeating the above
process iteratively, steady solutions for 4(7, ), ¢(+) and J(+)
can finally be obtained. The termination of the iterative process
depends on the accuracy needed. To obtain as accurate solutions
as possible for J(77) or ¢(7"), the solution of A(¢(7, d(7) must
be as accurate as possible. It should be made clear that eqns. 1
and 2 are not an artificially truncated BC for terminating FD
mesh layers. Theoretically, eqns. 1 and 2 are exact field relation
equations and no approximation has been made to these equa-
tions. The calculation error is mainly due to the numerical inte-
gral, except the intrinsic error of the FD method.
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Fig. 3 Convergence of IBC solutzons for 2D rectangular cylinder scat-
terer with induced current J( )’
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