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can be solved by using computationally efficient algorithms. Several
examples have been provided to demonstrate the efficacy of our
method.
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Auto-Term Representation by the Reduced Interference
Distributions: A Procedure for Kernel Design

LJubisa Stankovié

Abstract— An analysis of auto-term presentation using the reduced
interference distributions (RID) is done. Comparison with an ideal time-
frequency signal representation is taken as a basis for this analysis.
The following distributions are considered: Choi-Williams, Zao-Atlas-
Marks, Born-Jordan, Sinc, Zhang-Sato, Butterworth, Spectrogram, and
the author’s recently proposed S-method for time-frequency analysis.
Various distributions produce different auto-term shapes. In all cases,
the condition for cross-term reduction is contradictory to the condition
for high auto-term quality. A procedure for designing a kernel that
will produce the desired auto-term shape is demonstrated. An optimal
kernel, with respect to the auto-term quality and cross-term suppression,
is derived.

I. INTRODUCTION

Time-frequency analysis has attracted the attention of many re-
searchers. The main challenge in this area lies in the fact that many
fundamental questions are still waiting for viable answers. A whole
variety of tools for time-frequency analysis, mainly rendered in the
form of energy distributions in the time-frequency plane, has been
proposed (Spectrogram, Wigner distribution, Rihaczek distribution,
Page distribution, Choi-Williams distribution, etc.; for a complete
list and source references, see [1] and [2]). Cohen has shown that
all the above distributions are simply special cases of a general
class of distributions obtained for a particular choice of an arbitrary
function (kernel) [1]. Generally, these distributions belong to the
class of quadratic signal transforms. Due to their quadratic nature,
they are inevitably accompanied by undesirable effects, manifesting
themselves as the cross-terms. The shapes, location, and other cross-
term properties have been intensively studied, [3]-[7], [10]-[13],
[15}-[17], [20]. A class of distributions having the property of
reducing cross-terms is defined as reduced interference distributions
(RID’s) [10].

However, the related papers devote little attention to the shape
of auto-terms that, after all, represent an ultimate goal of any
time-frequency analysis. Therefore, the primary motivation for this
research was to provide some additional insight into the auto-term
shapes for the RID class of distributions.

This correspondence is organized as follows. Section II presents
an ideal time-frequency representation of the frequency modulated
signals. In Section III, the auto-term function, in the Cohen class
of distributions, is defined. Auto-term forms, produced by various
distributions, are compared in Section IV. The procedure for kernel
design is demonstrated in Section V.

1I. IDEAL TIME-FREQUENCY REPRESENTATION

Generally, for an arbitrary signal, there is not a unique answer
to the fundamental question “What should an ideal distribution look
like?” However, the answer may be precise, and with a full physical
meaning, if one concentrates on a specific class of signals [8], [14].
This is basically the approach that we have pursued in this work.
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The bandwidth relation for any signal of the form x(t) =
A(t)e?®" is given by [8], [18]

4 T A DN\ T . ‘
B? = / (%) A (t)dt + / (' (t) — (w))? A% (Dydt. (V)

If the mean frequency is equal to the instantaneous frequency
({w) = w;(t) = ¢'(¢)), then the instantaneous bandwidth is J?/t =
(A'(t)/A(t))?, [1], [8]. Details on this definition may be found
in [8]. It is apparent that the ideal distribution for signals with
|A'(t)/A(t)] << 1,ie, 07, — 0, should be in the form

I(w,t) = 27 A*(1)8(w — ¢'(t)). )

This distribution is ideally concentrated, along the w axis, at the
instantaneous frequency ¢’ (¢). It is also ideally concentrated along the
t axis at the group delay ¢ = (¢'(w))™" = ¢(w) (an inverse function
of the instantaneous frequency &' (¢) under the conditions described
in [14] is the group delay function ¢(w)). The same expression for
the ideal distribution may be obtained from the analysis of x(#) using
the stationary phase method. This analysis is done in [13] (see also
the Appendix). Similar forms of the ideal distribution are proposed
and analyzed in [9] and [14].

If signal z(#) is multicomponent, i.e., z(t) = 225:1 xm(t) [6],
[9], [14], then it is very difficult to define how the ideal distribution
should look. We will assume that it should be equal to a sum of the
ideal distributions of each individual signal’s component. Note that
the ideal distribution, in this case, is not an energetic one with respect
to a(t), but it is energetic with respect to each component separately.

III. AuTO-TERMS IN THE COHEN CLASS OF DISTRIBUTIONS

As stated in the previous section, a specific class of signals will
be defined for the auto-term shape analysis. In order to define such
a class of signals, consider the Cohen class of distributions, bearing
in mind that aJl shift covariant time-frequency distributions belong
to this class [1], [2], [13]:

CD(w,t)= = [[ [ (6, 7)x(u+7/2) )
—ec (3)
2 (u — 7/2)e I TIVTHI Gy dgdr
where (@, 7) is an arbitrary kernel function. Ideal distribution (2)
may be easily translated into form (3) (taking an inverse 2-D Fourier
transform of I(w,?) and then its 2-D Fourier transform) as

A? S Ot G
/// I (T =IOt = jer iU g 0 g7 4)
2 J ) )

where A(t) is treated as a constant A. Comparing (3) and (4) while
having in mind the uniqueness of the Fourier transform, we get that
signal x(t) = Ae?®™ has the distribution equal to the ideal one (see
(2)) iff

I(w, t,) =

(0, T)(jj(/)(u«#r/?)—jd)(u*r/‘z) — cjg,/(u)T.

Expanding ¢(u £ 7/2) into a Taylor series around u, up to the
second-order term, we get

et ) 6@ umry)
3T

[V

e, 7)=r¢c )?

where 71 and 7, are variables ranging from O to 7/2. From the last
equation, one may conclude that for any signal z(¢), there exists
its own kernel such that the Cohen distribution is equal to the ideal
one [9]. Here, we will restrict the analysis to the case of signal-
independent kernels. With this assumption (which is of practical
importance), we get that the ideal distribution may be obtained only
if Q“”(u) = 0, ie., ¢(f,7) = 1. This is the Wigner distribution
kernel. The previous requirement (6> (u) = 0) is met only if the
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signal is linear frequency modulated:
o(t) = A(t)ed et /27H00 s

where A(t) should be treated as a constant within the considered
time interval.

This class of signals satisfies some other important properties as
well:

1) Signals (S5) have simple mathematical form.

2) At the same time, these signals are not so simple that two
or more distributions from the Cohen class have the same
auto-term.

3) There exists one distribution having the ideal time-frequency
representation defined by (2).

4) Such a class of signals is of great practical importance.

5) The Fourier transform of z(t) belongs to the same class
of signals in the w domain FT{Ael(*"/2+00}
Av/j2m/a e=1w=?/(29) g0 that definitions from one
domain (¢ or w) may be directly applied to the other one
(w or t).

6) In addition, theoretically, a very important delta pulse §(t) may
be written as a limit of (5) (details on this form of the delta
pulse may be found in [18]):

5(t) = lim /Q—Z—jefafz/?. (6)

This way, the delta pulse may be formally treated as a

frequency-modulated signal of form (5) with A = Q{”r-;.lts
ideal representation, corresponding to (2), is I(w,t) =
lim 275-6(w — at) = §(¢t).
a—o<

The Cohen distribution of signal z(¢), given by (5), is

o)

CD(w,t) = A / e(—ar, vr)cj(“t+b_”)7d7 @)
CD(w,t) = A°C(w —at —b) with
C(w) = FT{c(—ar,7)}. 8)

The auto-term shape is determined by function C(w) which will be
referred to as the auto-term function.'

It is evident that a member of the Cohen class (considering only
signal independent kernels) having the ideal auto-term shape is the
one with c¢{—ar, 7) = 1 for any 7 and a. This is precisely the Wigner
distribution.” However, as it is widely known, this distribution has
very emphatic cross-term effects since its kernel is not of a lowpass 2-
D filter type [10]. Any other distribution will have auto-terms that are
more or less distorted when compared with the ideal representation
).

In order to provide a basis for the analysis that follows, we will
also review some results on the locations of the auto-terms and cross-
terms in the (¢.7) plane. Consider a simple two-component signal
2(t) = x1(t)+x2(t). Suppose that the following practical assumption
can be made: The signal’s components may be treated as being time
and frequency limited, i.e., x12(¢) = 0 for |t — t, 2] > T/2 and
Xi2(w) = FT'{z12(t)} = 0 for |w — wy2{ > W/2. From (3),
it follows that the auto-terms are located in the 7 direction within
the interval |7] < T, whereas the cross-terms lie in the region

! Although we have defined C(w) as a function of w, we may also write
CD(w,t) = .42C(a(L;~b —1)), where (w—b)/a is a group delay of signal
(5). Thus, the auto-term function may be written as a function of ¢ in the form
C(at).

2 A signal-dependent kernel should have (8, 7) = 1 only along the line
6 = —ar for a given a in the (6, 7) plane. Since the ambiguity function is
equal to zero outside this line, ¢(8, 7) may take any values there. Refer to [19],
where the distribution (with signal dependent kernel) having this property is
analyzed.
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c(0,1)=0

auto terms

(@) (b)

Fig. 1. (a) Auto-term and cross-term illustration in (8,7) domain; (b)
reduced interference distribution kernel support (Sinc distribution).

|7 —t1 4+ t2] < T. The same results may be obtained from the
Cohen distribution definition in the frequency domain [1], [2]. The
auto-terms are located in the region |#| < W, whereas the cross-
terms are dislocated from the origin |0 — w1 + wz| < W. A graphical
representation of the previous consideration is given in Fig. 1(a) [2].
A distribution, with reduced cross-terms should have the kernel of a
lowpass filter type [10]. At the same time, the marginal properties’®
are satisfied if ¢(#,0) = ¢(0,7) = 1. This means that a distribution
that satisfies marginal properties and belongs to the RID class should
have a kernel support, as illustrated in Fig. 1(b). It is apparent that
the condition for a good cross-term reduction is that the region of
kernel support is as narrow as possible around the origin and the
coordinate axes # and 7. However, the auto-term quality is higher
if this region is wider; see (8). Those are contradictory requirements
that are differently compromised in various distributions. Since the
cross-terms are studied in detail in the cited references, we will not
pursue their analytical forms in this paper. We will instead focus our
attention on the auto-terms only.

IV. AuTo-TERMS IN THE RID’S

According to (8), one is able to derive the auto-term func-
tion for any distribution from the Cohen class. Results for some
typical distributions are presented in Table I and Figs. 2 and 3.
The following distributions are considered: Pseudo Wigner distri-
bution (PWD) [1]-[3], Sinc distribution [1], [2], Choi-Williams
distribution (CWD) [5], Zhao—Atlas-Marks distribution (ZAMD)
[11], Born—Jordan distribution (BJD) [1], [2], Zhang-Sato distribution
(ZSD) [20], Butterworth distribution (BD) [21], smoothed pseudo
Wigner distribution [1], [2], Spectrogram [1], [2], and the S-method
[12], [13], [15}-117].

Here, we will provide some additional explanations for the results

contained in Table I (presenting auto-term functions and their widths).

Auto-term functions for the ZAMD and the ZS distributions, as
well as for the Spectrogram, are approximations obtained using the
stationary phase method (see the Appendix). Functions K (w),C(w)
and S(w) (in Table I) are the Fresnel function and its real and
imaginary parts, respectively. The ambiguity function A...(8,7)
[1], [2] is defined by

Ao (8,7) :/ wt 4+ 7/2)w*(t = 7/2)e % dt

3The marginal properties are satisfied if 1) the integral of a distribution
over frequency is equal to the signal power |x(t)|l and 2) the integral of a
distribution over time is equal to the spectral energy density | X (w)}.

Ve,
“The Fresnel function is defined by K (w) = 1/ % [ e du.
0
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whereas P(6) = FT{p(t)} is a window-function in the S-method:

SM(t,w) = % /

J—oco

o0

P(8)STFT(t,w+ 6)STFT" (t,w — 6)df

where STFT(t,w) = FT, {x(t+7)w(r}}. The values of e, o, and
617, are chosen such that the widths of distribution kernels’ main
lobes, in the #7 direction, are the same. For positive kernels, we
assumed that their widths are defined by the points where the kernels
were attenuated e &~ 2.718 times, whereas the width of the Butter-
worth distribution kernel is defined by the well-known 3 [dB] value.
The width of window w?(7/2) is denoted by 7. The width of P(#),
in the S-method, is assumed to be one tenth of §max, thus producing
approximately the same kernel width, along 6, for numerical data
given in Fig. 2. This width of P(#) is twice (five times) less in Fig.
2. (Fig. 3) than the theoretical one that would produce the same auto-
term as the pseudo Wigner distribution does [13], [15]-[17]. How-
ever, this window narrowing resulted not in a wider auto-term but in
small side lobe appearances, see Figs. 2(g) and 3(g) (note that the S-
method may be understood as a deconvolution of the STFT’s). In the
smoothed pseudo-Wigner distribution, we assumed the same width
in the ¢ (and 7) directions as in the S-method B(fmax/10)%/2 = 1.
The auto-term widths (Table I) are defined following the same logic
as in case of kernels widths. Some additional details on the auto-term
forms and their derivations may be found in [23].

1t is evident from this analysis (which is summarized in Table I and
in Figs. 2 and 3) that when comparing various reduce interference
distributions, not only a cross-term reduction but the auto-term shape,
as well, should be taken to be an important comparison parameter.
The results presented in Table I and Figs. 2 and 3 are, in our opinion,
so apparent that there is no need for their further description or
discussion.

V. A PROCEDURE FOR RID KERNEL DESIGN

On the basis of (8), one may construct a distribution with the
desired auto-term shape in the following way: If C(w) is a given
auto-term function for the linear frequency modulated signal, then
the product kernel ¢(f,7) = c(f7), that will produce this auto-term
form is defined by

() = &= [ C(w)e’?dw
-0 )]

at —ag® =67 or |g| = /167 /a]

where a is the instantaneous frequency coefficient z(t) = e
Example: Let us determine the kernel function that will, fora = 1,
produce the Hanning auto-term function C(w) = %[1 + cos(w)] for
|wi < 1 and C(w) = 0 elsewhere (coefficient k will follow from the
condition that ¢(0) = 1).
According to (9), we get

jat? /24bt

= o(r) = S VITD)
elb.7) = elb7) = s — o)

This kernel decreases in the (8, 7) plane as 1/ ]97|3/ 2. Thus, kernel
(10) will have better cross-term reduction than the ones decreasing
as 1/(07), which were presented in Section IV.

In the analysis performed in Section III, we have seen that the
width of ¢(—7,7) (i.e., the width of ¢(—ar, 7)) should be as small as
possible in order to have high cross-term suppression. However, at the
same time, the width of auto-term function C(w) = FT'{¢c(~ar,7)}
should be small (i.e., c(—ar,7)) wide) in order to produce a
concentrated and sharp distribution in the time-frequency plane.
Product m of the width of C(w) (which is denoted by D) and the
width of ¢(—7,7) (which is denoted by d) is constant for a given
kernel. It satisfies the uncertainty principle relation Dd = m > 1/2,

(10)
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TABLE 1
AuTO-TERM FUNCTION IN THE REDUCED INTERFERENCE DISTRIBUTIONS. (*) IN THIS COLUMN, THE VALUES 3 =+ =1, «/2 = o = 6,71 = 27 , AS WELL AS
THE HANNING WinDow w? (7/2) OF THE WIDTH T' = 28.2, ARE ASSUMED. FUNCTIONS ARE FOR @ > 0; IF ¢ < 0, THEN THE SAME FORMS ARE VALID WITH |a|

Auto-term function Auto-term Auto-term Delta

Distribution Kernel ¢(4,7) C(w) = FT{c(~ar, 1)} width width (*) pulse
signal
Pseudo Wigner w?(r/2) FT{w?(r/2)} = W(w) 87/T 0.891 8(1)
distribution
Sinc distribution rect(f7/a) gdinlw :/(2“) 27y /2a/a 2.51/a 5(t)
Choi-Williams
o
distribution Paatis / et ot g 2.8v/27afo 2.8,/a 5(t)
. 2
ZAM distribution [r] 222w (7) ()] | w(e) 2.56/a 2.56./a 0
Born-Jordan %;&}—221 2z, S(%’;) - C(%)] +
distribution +/Esin(L + 1) 3.3\/a 3.3\/a 8(t)
Zhang-Sato
4
distribution e07*1o% cos 82 VEEeT#77 cos( - I) 4.3\/a 4.3\/a 5(2)
Butterworth
distribution T giinley/oin/e 6.24\/af(0im) |  2.49/a 0
1+{ 7
171
for large 4N
S-method = P(3) %0 Awuw(8,7) W (w) 8x/T 0.891 2p(2t)w* (1)
Smoothed pseudo
; istributi —862 [2—~7r3[2 PP 2n —i5

Wigner distribution e v Taye 20Am 2.82\/a?B + v | 2.82v/a2 +1 Fe 3
Gaussian
Spectrogram Aww(8,7) rw?(w/a) aT 28.2a wi(t)
Optimal kernel
distribution elorlle T emowiea) 1.6\/27a/o 1.6\/a 8(1)

[18], [22]. Thus, if one fixes the value of D (which is the auto-term
width), then the remaining value d (being the measure of cross-terms
suppression) will be minimal if Dd is minimal, i.e., equal to 1/2. The
same is valid if one fixes d. A kernel defined by Dd = 1/2 (optimal
in the described way) is presented by the following theorem.
Theorem: The product kernel c(f, 7) c(67) , which has the

property that the product of its width d along line § = —a7 and
width D of auto-term function C'(w), is minimal, is defined by
o(fr) = e~1071/7, (1)

Proof: This kernel directly follows from Gabor’s uncertainty
relation [18], [22]:

o

D*d® = (22 [ HCW)Pdw)(E [ Ple(=7, )P dr) = 1/4.
_—o0 —o0
The minimal value 1/4 is achieved for ¢'(—7,7) = krc(—7, 7). The
finite energy solution of the above differential equation is the normal
2

function c(—7,7) = Be ™™ It follows that the optimal kernel with
respect to this criterion is

(=1, 7) = e(=7") = 877—2/‘7

where the values B = 1 (unbiased energy condition), as well as
k = 1/0, are taken. The kernel function, which corresponds to this
equation, according to (9), is defined by (11). Q.E.D.

The kernel defined by (11) could be treated as the one belonging
to the generalized Choi—Williams distributions [2] (in a wide sense)
with V' = 1/2. The auto-term function is of the form

Clw) = 4 T emow?/(lal) 12)

a
It is positive for all @ and 0. Assuming ¢ = 27 and ¢ = 1, as
in Section IV, we get that the auto-term function is attenuated e
times at w = 0.80. For other ¢ and o. the auto-term width is

W = 1.6/2x|a|/c.

The optimal kernel distribution (11) in the case of multicomponent
signal x(t) = et/ cos(6t) at instant ¢ = 0 when the cross-term
assumes its maximal value is shown in Fig. 4 along with the Wigner,
Sinc, and ZAM distributions. Note that the S-method would produce
the same auto-terms as in Figs. 2(g) and 3(g), without cross-term
[12], [13], [15]-[17].

The distribution described by (11) satisfies the marginal properties
since ¢(0) = 1. It satisfies the following conditions as well: realness,
time and frequency shift, time-frequency scaling, etc., but there is
a question: Are the unbiased instantaneous frequency and group
delay properties satisfied? The mean instantaneous frequency of a
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Fig. 2. Normalized auto-term function for @ = 0.25 : (a) Pseudo Wigner distribution; (b) Choi-Williams distribution; (¢) ZAM distribution; (d) nonnegative
ZAM distribution; (¢) Born-Jordan distribution; (f) ZS distribution; (g) S-method; (h) Butterworth distribution [V = 4; (i) Spectrogram. The Hanning window
is used. In all examples, the region 7 € [—14.1,14.1], 8 € [—14.1,14.1] is considered. Note that the same figures will be obtained if the time and frequency
axis are scaled by @, ie., 7 — 7/Q, 8 — 8Q and @ — aQ?, where @ is any real number not equal to 0.

distribution belonging to the Cohen class is [1], [8] #'(t)), then (w) = ¢'(t) even if ¢'(0) is a nonzero constant. If the
, , amplitude variations are of order of the phase variations, then there

(Wy=9¢'(t) + 2%—@ C‘ (O). is a question: “What does ¢'(¢) represent in that case” or “Can it be

(&) (0) considered to be the instantaneous frequency at all?” (For example, if

It follows that (w) = ¢/(t) if ¢(0) = 0 or ¢(0) is a constant, ~We have asignal o(t) = A1e/*1() 4 A,6792() = A(£)e?*©), where
and A'(t)/A(t) — 0. In other words, if the amplitude variations the amplitude variation A'(t) is of order of the phase variation ¢'(t),
are negligible compared with the phase variations (whose measure is  may we treat the value of ¢'(¢) as the instantaneous frequency at all
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C(w) 20log|C(w

1 -
0 A\l/ \VA
1 . §
-10 0 10 -10 0 16

Fig. 3. Normalized auto-term function for a = 0.5 : (a) Pseudo Wigner distribution; (b) Choi~Williams distribution: (c) ZAM distribution; (d) nonnegative
ZAM distribution; (e) Born—Jordan distribution; (f) ZS distribution; (g) nonnegative S-method; (h) Butterworth distribution N = 4; (i) Spectrogram. The
Hanning window is used. In all examples, the region 7 € [—14.1,14.1], § € [—14.1,14.1] is considered. Note that the same figures will be obtained if the
time and frequency axis are scaled by Q, ie, 7 = 7/Q, § — 0Q and a — aQ?, where Q is any real number not equal to 0.

(8], [14]?) If the unbiased instantaneous frequency and group delay In the end, we will mention that the minimization of Dd is just
conditions are to be satisfied anyway, then the optimal kemel may  one of possible criteria to define an optimal kernel. Other criteria will
by modified: produce different optimal kernel functions.
—|o7|/0 |67
c(fr)=¢e (1+—). (13)
T VI. CONCLUSION
This kernel has the values ¢(0) = 1, J(04+) = ¢(0-) = 0. The analysis of auto term representation in the RID class of

Therefore, it satisfies the marginal conditions. distribution is presented. It is shown that various reduced interference
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Fig. 4. Time-frequency representation of a multicomponent signal at instant
t = 0, where the cross-term reaches its maximal value. Normalized values
of (a) Pseudo Wigner distribution; (b) Sinc distribution (o/2 = 27); (¢)
optimal kernel distribution (thin line ¢ = 27 and the thick line ¢ = 7); (d)
Zao-Atlas—Marks distribution.

distributions produces different auto-term functions. The procedure
for a kernel design is given.

APPENDIX

The stationary phase method states that if |A'(£)| < |¢'(¢)], then
[18]

X(w) — / A(t)em(t)eﬂwdt o~ 6’¢(t°)6'jwt°‘4(tg)

— oo

2wy

¢ (tq)

with ¢'(t0) = w, and ¢'? (o) # 0.

If we have a product A(t)w(t) that satisfies the stationary phase
method condition, and if the instantaneous frequency is linear, i.e.,
@' (ty) = aty, then

oo

Xu(w) = / Atyw(t)e *Me ¥ ar = X (w)w(to)
with w(ty) = w(w/a).

This relation may be applied in order to get the auto-term function
in the spectrogram of signal (5):
2

(STFT(w, )] :} / AT 2y (eI g

271'1421 of w—at
oo ——
a a

or in the Zao—Atlas—Marks distribution:

C(w) = /jo [T|——Sin(a72/2)w(r)e”"”dr

1R

at?/2
0 R P bl I
27 |1 LN
E%{i_ I((%) }w(w/a)

The approximations is obtained for large T ax /2, practically mean-
ing that inside window w(w) (|7| < Tmax), there exist few qua-
sisemiperiods of function sin(a7?/2) , i.e., this function has few zeros
inside |7| < Tmax). In the same way, we get the auto-terms in the
7S distribution. Agreement of these auto-terms with the numerically
obtained ones (according to (8)) is almost complete.
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