. Jk-4 k-3 k-2 k -1 k

Fig. 2 Modified trellis of uncoded 2PSK for improved Sequence?m;}na-
tor

af): {6() = 0, o(/~1) = 03, b(): {&() = 0, 6(-1) = 0},

L(/) {<1>(l) =0, (-1 = 7}, d(h): { (1) =0, 0(-1) = =}

= shortest error event path

which differs from ¢y(k) only in the symbol ¢y(k—2). Because of the
additional memory in the nodes, two paths which diverge from
each other owing to the difference in a single transmitted symbol
take more transitions before they remerge. For high SNR, the
probability is very high that the sequence estimator only has to
choose between (k) and ¢,(k) (and not a longer error event path)
for the survivor at node a(k), and in doing so it is deciding on the
symbol §(k-2). Using the same analysis as in the paragraph above,
this decision is made by comparing

Re > W

I=h—L I#k—2

r(k —2)

against zero. Thus, the decision on ¢(k-2) is made using the signal
sample r(k—2) with the aid of the reference

k= > )

I=k—L,[#k—2

which is a stronger reference for detecting ¢(k—2) than the refer-
ence v(k) is for detecting 0(k—1) in the original sequence estimator,
because v(k) has more signal samples closer to the (k-2)nd inter-
val. On this basis, we expect the sequence estimator using the
modified trellis to work better.

8 8.5 9 95 10 10.5 1

SNR ES/NC,CIB fzr

Fig. 3 Simulated BEP of 2PSK, with sequence estimation in carrier
phase noise

(i) coherent (theoretical)-1/2 erfc(E/Ny)'?

(if) sequence estimator of [1]

111) improved sequence estimator
6% = 0.02 rad®

We simulated the original sequence estimator of [1] and the
improved estimator here for the case of 2PSK in the presence of a
random-walk carrier phase model given by 8(k+1) = 6(k) + w(k),
where {w(k)} i3 a sequence of independent, Gaussian random var-
iables, each with mean zero and variance ¢* (the phase noise vari-
ance). The simulated BEP results in Fig. 3 for 6 = 0.02 rad® with
L = 8 symbol intervals show that the improved estimator here per-
forms ~0.25dB better than the original estimator of [1] at BEPs of
105 to 10°°.
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Introducing time-frequency distribution with
a ‘complex-time’ argument

S. Stankovi¢ and L. Stankovié

Indexing terms. Signal processing, Time-frequency analysis

A distribution, highly concentrated along the instantaneous
frequency, is introduced using a ‘complex-time’ signal argument.
Realisation of a signal with complex argument, using a signal
with a real argument, is presented.

Introduction: The high concentration of a distribution, along the
instantaneous frequency, is one of the very important properties in
time-frequency analysis [1]. Depending on the signal form, differ-
ent distributions may be used successfully for that purpose [1 — 6].
For a signal of the form

z(t) = red*® (1)

time-frequency presentations may be, generally, written as
TFD(t,w) = 27r298(w — ¢ (1)L FT {72V W (W) (2)

where Q(z, 1) is a factor defining distribution spread around the
instantaneous frequency, W(w) is the window’s Fourier transform,
and ¢ is a constant. In the case of an ideally concentrated distribu-
tion, factor Q(z, ) should be equal to zero. This may be achieved
only by the specific distributions for special signal forms [1, 4, 5].
Spread factor Q(#, 1) is presented in Table 1 for some interesting
distributions (from the point of high concentration) [1, 4 — 6]
obtained using a Taylor series expansion of the phase function.
Results from Table 1 are illustrated in Figs. 1 and 2, for signals
x(f) = e/¥35m and x(f) = e/105+503-1300 regpectively. It may be
observed that in both cases the L-Wigner distribution (with L=2)
[5, 6] reduces artifacts better than the Wigner distribution. Further
improvement of this distribution may be achieved by increasing
the distribution order L. Polynomial Wigner distribution [4] pro-
duces complete concentration at the instantaneous frequency in
the first case, while it is very sensitive to the fifth order term in the
second case (in this case a higher order polynomial Wigner distri-
bution should be used, [4]).

‘Complex-time’ distribution: A significant decreasing of spread
flinction Q(z, T) (meaning the concentration improvement), may be
achieved by defining a distribution with a ‘complex-time’ argu-
ment:

CTD(t,w) =

o

e O G e e

i )
Factor Q(z, 1), for this distribution is
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5

Q6 7) = 600 gy + 69 0) o + 0

(4)

Table 1: Spread factor in some time-frequency distributions

Distribution

Spectrogram SPEC(,0) =] ] w(Dx(t+0e 7%~

Wigner

o T T
Sistribution WD(1,0) =] (e , )X (1 - ?)e’»’ﬂ“ v

L-Wigner

o T T
=] w Lit+— X L(r— __eror
fistribution LWD(1,0) J.wn(‘c)x (1+ ZL).\ (r 2L)e’ de

Fourth order

polynomial PWVD(t,0)=] Tu(r)xz(t+0.6751)x*3(r 0.6751)
Wigner -
distribution X(t+0.851) (1 —0.85T)e 7 dt
Spread factor
2 3 4
Spectrogram Q. D=0P()— + ¢HD— TN () — + -
2! 3! 2!
. 3 il <7
Wigner — () e ()
distribution A=) 223 +¢ (l) +¢ vy 767|
. 7
L-Wigner 3 ) N
distribution ALv=0 (t) 3 +Q) (t) 245174 o (t:257! I
Fourth order 5 Do
e (1) o'
f\;ﬁfgggf}““l 010)=-0327 - v 0386
5! 7!

distribution

The dominant (first) term in the expansion of Q(z, 7) is of the fifth
order. All terms are significantly reduced with respect to these in
the Wigner distribution (e.g. the third order term does not exist:
the coefficient with the fifth order term is reduced 2* times; the
seventh term does not exist; the coefficient with the ninth order
term is reduced 2° times etc.). In the ‘complex-time’ distribution,

|

-1

0/1
Fig. 1 Time-frequency representation of signal with polynomial phase of
the third order

a Wigner distribution, b L-Wigner distribution, ¢ Polynomial Wigner
distribution, ¢ ‘Complex-time’ distribution

1 =
-B4TT S

Fig. 2 Time-frequency representation of signal with polynomial phase of
the fifth order

a Wigner distribution, » L-Wigner distribution, ¢ Polynomial Wigner
distribution, d ‘Complex-time’ distribution

the number of terms in Q(z, ©) is two times smaller than in the
Wigner distribution, since the seventh, ninth, 11th etc. terms are
completely eliminated. Illustration of this distribution is presented
in Fig. 1¢ and Fig. 2¢. In both cases the distribution is completely,
or almost completely, concentrated at the instantaneous fre-
quency. Note that the ‘complex-time’ distribution also satisfies
some very important properties for the time-frequency signal
analysis:

(1) ‘Complex-time’ distribution is always real for signals of the
form in eqn. 1.

(i) ‘Complex-time’ distribution satisfies the time marginal condi-
tion for any signal

—1—/ CDT(t,w)de = |2 (b))
27 /.,

(iii) The unbiased energy condition is satisfied for any signal

217[/;CDT(tvw)dtdWZ/t’x(t)‘zdt:ET

(iv) The frequency marginal is satisfied under the condition that
the factor of Q(z, 1) may be neglected.

(v) If CTD(z,0) is a distribution of signal x(¢), then CTD(~T,w) is
the distribution of signal x(¢~7).

(vi) If signal x(z) is time limited to an interval |1 <
CTD(t,w) is also limited to the same time interval.

(vi) If CTD(r,0) is a distribution of x(7), then CTD(z,0>-,) is a
distribution of signal x(r)e/®’.

(viii) The ‘complex time’ distribution of the scaled signal \/\alx(al)
1s CTD(at,ava).

T, then

Numerical realisation - analytic extension of a signal: For numeri-
cal realisation, a discrete version of the ‘complex-time” distribution
has to be defined. According to the analogue definition in eqn. 3,
discrete pseudo form is given by

N/2
CTD(n.k) = Z w(m)z(n+ m)z*(n —m)
—N/2+1
xx7H(n + jm)ad (n — jm)e~ =3 5 dmk

(5)
where 1(m) is a window. The signal has to be oversampled twice
with respect to the sampling interval in the Wigner distribution.
Theoretically, realisation of the CTD is very simple, according
to the definition in eqn. 5. It is a DFT of w(m)x(ntm)x (n-m)
xHntjm)xi(n—jm). But, in practical realisations, the values of x(n)
are available only along the real axis, The values with complex
argument x(n+jm) are not known and they must be determined
from the values on the real-time axis. Here, we will present a way
of getting a signal with the ‘complex-time’ argument, based on the
real-time-argument signal. This problem is mathematically well
studied and known as an analytical extension of the real argument
function. Let us begin from the Fourier transform pair:

N/2-1
Z X(k efN
k=—N/2
L N (6)
—i%Fnk
X(k)= N ~§/2x(n)e N

where N is an even number. It is known that the analytical exten-
sion of function e is given by &~ where z = n+jm is a complex
argument. The previous analytical extension is valid for |z| < oo,
Consequently, the analytic extension of signal x(n) is defined as a
sum of the analytic extensions of complex exponential functions,
and 1t is given by:
1 X
r(n+jm) = i Z X(k)e™

k=—N/2

Lmkej%'nk (7)

with a region of convergence |n+jm| < oo for N < . This expres-
sion may now be used for a very efficient numerical realisation: if
we multiply X(k) = FFT[x(n)] by exp(-2mmk/N), for a given m,
then x(n+jm) is obtained as x(n+jm) = IFFT{X(k)exp(-2nmk/N)).
This is the method we used in numerical examples. Eqn. 7 may be
transformed in the following way: since X(k) is the Fourier trans-
form of signal x(n), eqn. 7 becomes
M—1
L3 @eutn=i=m )5 Siobl(G(r—1) —m)m]
N sinh[(j(n— l)—m)%
for2M =N (8)

This way, the signal with a complex argument is obtained from
the one with the real argument. Note that for m = 0, the very well
known form of the sampling theorem of periodic signals is
obtained.

r(n+jm) =

l=—m

Numerical example: An illustration of the above relations will be
given on the time-frequency representation of the signal:

I(t) — 6]‘(0.1 cos(b1t)+as cos(bzt)) (9)

where a, = 3; b, = ®; @, = 1/3; b, = 3m. Discrete values of x(n) are
obtained by sampling signal x(¢) with a sampling period Az = 2/N,
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N = 64. Interval -1 < ¢ < 1 is considered. A window exp(—(41)'?),
close to a rectangular one, is used for |t| < 1/2. The realisation is
carried out according to eqn. 7 and using the FFT algorithms.
Fig. 3 completely confirms our previous conclusions on the distri-
bution concentration. In the numerical realisation, we should care-
fully use the above relations in the computation of a signal with a
complex argument, since for large values of argument m (which is
limited by window w(m) width, eqn. 5) we may find ourselves out-
side the computer (program) computation precision, which would
cause an error. If we want to use very wide windows w(m), and
very large m, an extended precision may be needed.

t

w

1
-8 8
a b

Fig. 3 Time-frequency representation of discrete signal

a Wigner distribution, 5 ‘Complex-time’ distribution obtained using
an analytic extension of the signal

Conclusion: The ‘complex-time’ distribution is proposed and ana-
lysed. It has been shown that the artifacts induced by this distribu-
tion are significantly reduced with respect to all other known
distributions.
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Tomlinson-Harashima precoding for the
magnetic recording channel

D. Krueger and J.R. Cruz

Indexing terms: Magnetic recording, Decision feedback equalisers

A new view on Tomlinson-Harashima (TH) precoding
demonstrates the applicability of this precoding technique to
input restricted channels. TH precoders of this kind are derived,
and a hybrid of decision feedback equalisation and TH precoding
is proposed.

To obtain equalisation without noise enhancement or error propa-
gation, the input signal may be passed through an inverse channe]
filter prior to transmission. However, it is often impossible or

impractical to invert the channel response. In this case the addi-
tion of a modulo element as shown in Fig. 1 may be made. The
function of this element is to map a real input into the range [-M,
M) by adding some multiple of 2A. Thus, if ¢(D) = round(a(D)
2M) for some input sequence a(D), the corresponding output
sequence will be H(D) = a(D)-2Mc(D). This technique is known as
Tomlinson-Harashima (TH) precoding [1, 2], and it produces the
following noiseless channel output:

2(D) = v(D) —2Mc(D) (1)

As long as the input sequence WD) is contained within some inter-
val of sise 2M (centred at r), it can be uniquely determined from
the noiseless output using a modulo element as shown in Fig. 2. A
value for M is chosen using the range of the input and the dis-
tance O between constellation points:

2M = max(v) — min(v) + 9 (2)

TH precoding as implemented in Fig. 1 cannot generally be
used in the magnetic saturation recording channel because w(D)
does not satisfy the constraint that the write current be =1 only.

v(D) + w(D) x (D) y(D)
modi-M M) |—e H(D)

n (D)
1-H(D)
TH precoder channel

Fig. 1 Block diagram of TH precoding technique

Example 1: Assume the magnetic recording channel is equalised
to H(D) = 1-D. Working from the constraints set on w(D), use of
eqn. 2 yields M = 2. If bipolar signals are used for v(D), the neces-
sary signals for w(D) are clements of the set {-2, -1, 0, +1}, which
does not satisfy the channel input constraints.

With suitable modifications, inverse filtering or TH precoding
may still be used when the channel has input constraints. Recall
that the input to the precoder corresponds to the desired output
(modulo 2M). The reason the previous example failed is that the
bipolar signals chosen for WD) do not correspond to channel out-
puts consistent with the input constraints.

Example 2: The output of the magnetic recording channel
equalised to H(D)= 1-D is composed of elements from the set {-2,
0, +2}. Choosing the elements of ¥(D) to be {0, 2} allows the nec-
essary signals for w(D) to be the set {-1, +1}.

Close examination of Example 2 reveals it to be equivalent to
the traditional form of precoding for magnetic recording, where a
nonzero input to the precoder causes a sign change at the precoder
output and a zero input causes no change. These inputs translate
at the channel output into a peak and absence thereof, respec-
tively. This example can be generalised to provide a precoding
method for all similarly constrained partial response channels.

Example 3: Let the magnetic recording channel be equalised to

L
H(D) =3 hD* 3)
k=0

where h, = 1 and /&, € Z (the set of integers). When w(D) is con-
strained to %1, the noiseless channel output will be a subset of 2Z
(when the sum of 4, is even) or it will be a subset of 2Z+1 (when
the sum of 7%, is odd). In both cases the possible channel outputs
can be partitioned into two sets. In the first case, the outputs can
be split into the set of integers congruent modulo 4 to 0, and the
set of integers congruent modulo 4 to 2. OQutputs from this first set
will be produced whenever the precoder input is 0, and outputs
from the second set whenever the precoder input is 2. Thus choos-
ing the signal constellation of v(D) to be {0, 2} permits the use of
precoding on these input constrained channels. In the second case,
the outputs can be split into the set of integers congruent modulo
4 to —1, and the set of integers congruent modulo 4 to +1. Chan-
nel outputs from the first set will result whenever the precoder
input is —1, and outputs from the second set will result whenever
the precoder input is +1. Thus choosing the signal constellation of
WD) to be {1, +1} permits the use of precoding on these input
constrained channels.
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