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A Time-Frequency Distribution Concentrated
Along the Instantaneous Frequency

LJubisa Stankovi¢

Abstract— A time—frequency distribution that produces high
concentration at the instantaneous frequency for an arbitrary
signal is proposed. This distribution may be treated as a variant
of the L-Wigner distribution, but it also satisfies unbiased energy
condition, time marginal, as well as the frequency marginal in
the case of asymptotic signals. The presented theory is illustrated
by examples.

I. INTRODUCTION

IME-FREQUENCY analysis has attracted attention of

many researchers. The main challenge in this area lies in
the fact that many fundamental questions are still waiting for
viable answers. The whole variety of tools for time—frequency
analysis, mainly rendered in the form of energy distributions
in the time—frequency plane, has been proposed (for a com-
plete list, see the review papers [1] and [2] and references
therein). Cohen has shown that all shift-covariant quadratic
time—frequency distributions are simply special cases of a
general class of distributions obtained for a particular choice
of an arbitrary function (kernel). Out of the Cohen class, the
Wigner distribution (WD) is the only one (with signal inde-
pendent kernel) that produces the ideal concentration along
instantaneous frequency ¢'(¢) (WD (¢,w) = 27 A26(w—¢/(t))
for the linear frequency modulated signals z(t) = A exp ($(t))
and ¢(t) = bt?/2 + ct + d [3], [4], [5], [18], [19]. In order to
improve the concentration of monocomponent signals, when
the instantaneous frequency is polynomial function of time,
the polynomial WD is proposed [6], [7]. A similar idea for
improving the distribution concentration of the signal whose
phase is polynomial up to the fourth order was presented in
[8]. In order to improve distribution concentration for a signal
with an arbitrary nonlinear instantaneous frequency, the L-
Wigner distribution (LWD) was proposed and studied in [8],
[9]1, [10], [4], and [5]. The polynomial WD, as well as the
LWD, are closely related to the time-varying higher odder
spectra [7], [9], [10], [11]. They do not preserve the usual
marginal properties [1], [2], but they do satisfy the generalized
forms of the marginals. For example, the time marginal in the
LWD is the generalized power |z(t)|?%, rather than |z(¢)|%.
Here, we will present a variant of the LWD obtained by
scaling the phase and 7 axis by an integer L while keeping the
signals’ amplitudes unchanged. This distribution may achieve
high concentration at the instantaneous frequency—as high as
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the LWD—while at the same time satisfying time marginal
and for asymptotic signals frequency marginal.

II. DEFINITION AND PROPERTIES

The scaled variant of the L-Wigner distribution (SD) of a
signal z(¢), in its pseudo form, is defined by

SDy, (t,w) = / w(r)z!H (t + :2%):5[[‘]*

_ Y mgwr
(t 5T ) e dr (¢))
where z[Zl(t) is the modification of z(t) obtained by multi-
plying the phase function by L while keeping the amplitude
unchanged:

(1) = A(t)e? 4O, )
The word “pseudo” will be used to indicate the presence of
window w, (7). For I = 1, the WD follows.!

The distribution defined by (1) satisfies the time marginal
and unbiased energy condition for any L

—/ SDy (t,w)dw = A%(t) and

/ / SDy (t,w) dw dt = / A2)dt=E, @)

where wr,(0) = 1 is assumed.
The frequency marginal is satisfied for asymptotic signals,
as well. Substituting 7/L — 7 in (1), we get

b SDy, (t,w) dt
L.

=i [ AG+5)ac-5)

. ILIB(+(7/2) (2~ (r/2))—w] drdi
= L| X, (Lw)|?

I'The original idea for this distributiori stems from the very well-known
quantum mechanics forms. For a signal z(t) = A(t)e/*(*), we form a
function ¥(A) = A(A)e/L¢(Y) that corresponds (with L = 1/A) to the
Wentzel solution of the Schroedinger’s equation or to the Feynman’s path
integral. This form applied to the original quantum mechanics form of the
Wigner distribution WD (A, p) = [ $(X + A7/2)¢™(A — h1/[2)e” IPT 47
produces the SD exactly. Of course, in signal processing, we are not restricted
to the real word value of it ~ 10“34, nor would this value be appropriate
for apphcatlons It will be shown that with L slightly greater than 1
(L = 2,4, ), we may s1gmﬁcantly benefit with respect to the distribution
concentration (uncertainty is of order 1/L?) while at the same time keeping
other important properties of the time—frequency presentation invariant.
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According to the stationary phase method [12]
X (L) = / A O-38et gy
—co

273

_ FL$(t0)—jLwto
Albo)e Lo (t).

“@

This holds for L — oo for any signal with continuous A(%)
and for asymptotic signals [12], [13] (signals with |A'(?)| <
|¢'(¢)|) for any L, including L = 1 (%o is the solution of
@' (to) — w = 0). It is very easy to conclude from (4) that for
asymptotic signals

L|Xn(Lw)* = | X ()]”

i.e., the SD, with wy(7) = 1, satisfies the frequency marginal
in this case as well.

Theorem: For any signal z(t) = A(t)e’*® having finite
derivatives of the phase function ¢(¢) and continuous am-
plitud A(¢), the SD for L — oo is concentrated along the
instantaneous frequency

Jim SPp(tw)= AW (w - ¢'(D)) ©)

where w(7) is a finite duration window W(w) = FT {w(7)}.

Proof: For a signal of the form z(t) = A(t)e’?®),
expanding @(¢ + 7/2L) into a Taylor series around ¢ up to
the third order term, we get

oo T T
SDy(t,w) = /_OO w(T)A<t+ ﬁ)A(t— ﬁ)
i’ (D7 i (8 () 46O (b=-72) [31L?) (7 /2)°
eI dr (6)
where 7,7, are variables 0 < |19 < |7/2L]. If ¢4 (r)
and ¢ (r),n>3 are finite, then for a large L and finite

duraton w(7), the value limy o [w(7) exp (§(¢® (¢ 4 1) +
@ (t—74)/31L2)(7%/8))] = w(r). In addition, for continuous

A(t), A(t+ (1/2L)A(t — (1/2L)) — A2%(t) holds, and the

form stated in the theorem follows. Q.E.D.

Further properties of the SD that are invariant with respect
to L (time-shift, modulation, time-support, frequency support
for asymptotic signals, - --) may be easily derived (proved),
following the ones for the Cohen class of distribution [1], [2]
or the ones for the L-class of distributions [14]. Form (1) may
be applied to any other transform or distribution. For example,
the modified version the short-time Fourier transform is

MST;, (t,w) = /00 wr,(7)2M(t + 7/L) exp (—jwr) dr.

The relation between MSTy (¢, w) and SDp (¢,w) is
SDy, (t,w) = (1/7) [ MSTy, (¢,w + )MST}, (t,w — 8) d6.

III. EXAMPLES

Example 1: Consider the Gaussian chirp signal of the form

:r(t) — Ae—at’/zejbt2/2+jct.

Q)

IEEE SIGNAL PROCESSING LETTERS, VOL. 3, NO. 3, MARCH 1996

t
2
y4
¢ 2 l’
. Cd

2 | m

2 ] 2 ° 2 [} 2 2 0 2

(@ ®) (©)

Fig. 1. Time—frequency representation of a Gaussian chirp signal: a) Wi;gner
distribution, b) L-Wigner distribution, c) the SD distribution with L = 8.

a) The L-Wigner distribution has the form

LWDy, (t,w) = /_ zl (t + 2—%)@*[‘ (t - é%)é_j‘” dr

_:AAZLe—a.Lt2 47TL€—((Q—bt—c)2/a/L)‘
\/ a .

For small a/L — 0, we get

(o]

LWDy, (t,w) = A2 208(w — bt — c) (8)

This distribution, for large L, produces the ideal concentration
at the instantaneous frequency for any a, but the amplitude
is raised to the Lth power. The WD (L = 1) produces the
complete concentration at the instantaneous frequency only
for a — 0, ie., for the purely linear FM signal [3]-[5]. For
any other a, the distribution is spread around the instantaneous
frequency, In Fig. 1(2) and (b), (A=a=b=2¢c=1).
b) The SD of the Gaussian chirp signal is

sou e = (e g)a e )

= A2t /4_7TL6—((w—bt—c)2/a/L2).
a

For a/L* — 0, we have the following:
SDy (t,w) = A2~ 2n§(w — bt —c). ~ (9)

This is the ideal time—frequency concentration at the in-
stantaneous frequency for any a. The convergence toward
to the complete concentrated distribution is of order L?; see
Fig. 1(c).

Example 2: Consider a noisy signal whose amplitude and
phase variations are of the same order: ‘

z(t) = A(H)e*® 4 n(t)
:ej157r(t+0.8)2 4+ e—J12sin [87/2(¢+1)]—307t+787(t40.5)>

+n(t) (10)

where n(t) represents Gaussian white complex noise of vari-
ance o2 = 1. In this case, any atempt to obtain the instah-
taneous frequency directly would fail. The WD and LWD of
signal (10) calculated using the Hanning window of the width
1/L and N = 64 samples inside the window are presented
in Fig. 2(a) and (b). For the LWD realization, the recursive
approach described in [4], [5], [9], [10], and [17] is used.
The SD with L = 2, in Fig. 2(c) is calculated using the same
recursive approach, starting from the modified STFT with L =
2,MSTy (t,w) = FT [wa(r)x2(t + 7/2)] and SDq (t,w) =
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Fig. 2. Time—frequency representation of a signal with fast amplitude variations:

SD distribution with L = 2.

(1/x7) [ P(8) MST2 (t,w + 0)MST; (t,w — ) db. For details
on numerical realization of the last relation, see [4], [5], [9],
and [17]. Note that the sampling interval in the MST; (¢,w)
is the same as in the WD. The results presented in Fig. 2 are
in complete agreement with the above discussion.

Note that modification (3) of the resulting phase in a
multicomponent signal is not the same as the modifications
of the individual components’ phases. In the case of multi-
component signals, the resulting signal may be written in the
form z(t) = A(¢)exp (j¢(t)) so that the SD produces the
complete concentration at the instantaneous frequency ¢'(¢)
in the sense of the Theorem?; see Fig. 2(c). Frequency ¢'(t),
in the case of multicomponent signals, is the mean conditional
frequency ¢'(t) = (w): = [/ wSD (¢,w)dw]/[J SD (t,w) dw],
for any L, including the WD with L = 1.

Signal (10) may be treated in two ways: as a multicompo-
nent one or as a FM signal whose amplitude varies rapidly.
Depending on its true nature, we may, for its analysis, use the
LWD or the SD; see Fig. 2(b) or (c).>

IV. CONCLUSION

The phase-scaled variant of the L-Wigner distribution is
presented. This distribution may produce the ideal signal
power concentration at the instantaneous frequency.
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