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L-Class of Time-Frequency Distributions

LJubi$a Stankovié

Abstract—The L-class of distributions for time-frequency sig-
nal analysis is derived and presented, generalizing the recently
defined L-Wigner distribution. Some particular distributions be-
longing to this class are introduced.

I. INTRODUCTION

HE oldest method for time-frequency signal analysis is

based on the short time Fourier transform (STFT). It
is a linear signal transformation. Many performances of the
signal’s representation may be improved using the quadratic
distributions ([1], [2] and numerous references therein). The
first quadratic representation was based on the Wigner distri-
bution (WD). Afterward, many other quadratic distributions
have been defined. Cohen has given the general form for
the shift covariant time-frequency distributions [1]. Analyzing
the instantaneous frequency presentation in [9], the L-Wigner
distribution (L-WD), as the higher order generalization of the
WD, is proposed and presented.

In the last few years, higher order time-varying spectra
(HOTVS) have become hot topics in the time-frequency
analysis [4]-[6], [8], [10], [11]. It turns out that the various
reduced forms of the HOTVS [5], [6] are the special cases
of the L-WD. It is shown that the L-WD (in its dual form)
is optimal in the analysis of multicomponent signals using
the Wigner higher order spectra [8], [11]. The L-WD is
derived as an optimal one in the analysis of multicomponent
signals using the multitime Wigner higher order distributions
[10]. Combined with the method for time-frequency analysis
presented in [7], the L-WD produced a powerful tool for time-
frequency analysis [8], [10]1-[12], [14]. The L-WD has been
defined in the case of multidimensional signals as well [13].
The extension of the L-WD to the L-class of distributions
(L-CD) is done in this letter.

II. DEFINITION OF THE L-CLASS OF DISTRIBUTIONS

The L-WD, in its pseudo form, is defined as [9], [10], [12],
[14]:
LWDL(tbw) = /wL(T)aU*L(t — L)ZL‘L(t + L)c_‘i“”'dT
’ 2L 2L )

(1
The word “pseudo” will be used to indicate when the window
wr(7) is included. It is known that the ambiguity function
may be defined as a 2-D Fourier transform (FTyp) of the WD
[11, [2], [15]. Here, we will introduce the L-ambiguity function
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and use it to define the L-generalized characteristic function
and the L-CD.
Definition 1: The L-ambiguity function is a FTap of the
L-Wigner distribution:
LAL(6,7) = /x*L(u - L)xl’(u + —T—)e"jo“du. 2
’ 2L 2L

u

Definition 2: A product of LAL(6,7) and an arbitrary
function ¢z, (0, 7) called the kernel produces the L-generalized
characteristic function:

MGy(0,7) = cr(,7) /x*L(u - %)mL(u + = )e~ Uy,

2L
3

Definition 3: The L-class of distributions is an inverse
FT2p of the L-generalized characteristic function:

Lytw) =5- [ [ [er®netu- 2
6 u T

(w4 %)e_j”e_je(“_t)duded'r. €] |

u

For L = 1, this class of distributions reduces to the Cohen
class [1].

Distribution (4) may be understood as an inverse FTsp
of the product of LA.(f,7) and cr(8,7). Thus, it is equal
to the 2-D convolution of Iy (¢,w) = FTop{cr(6,7)} and
LWD L (t, w):

1
LDy(t,w) = p //HL(t — t,w — v) LW Dy (u, v)dudv.
u v
(5)
All distributions from the L-CD may be treated as the
smoothed versions of the L-WD.! :

1Expressions (4) and (5) may be extended to the time-scale distributions
31

LADL(t,a) :%///c;;ta@,r/a)m*l‘(uf i)
9 u T

cat (w4 i)e_j“’of/“eﬂe(u_t)dudeT,

1 t—
LADy(t,a) = e //HL( - u,wo — av)LW Dy (u, v)dudv
u v

where a is a scale factor ¢ = w, /w, and wo is a constant. The properties and
spacial cases of this class of distributions may be derived starting from the
results given in this paper and the ones presented in [3] and [12].
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III. SOME GENERAL PROPERTIES

In this section, we will list some basic properties of the
distributions belonging to the L-CD. Many of them may be
obtained in a straightforward manner, generalizing the ones of
the Cohen class [1], [2]. These properties will be given without
proofs or any additional explanation. Attention will be paid
only to those for which the L-CD behaves in a qualitatively
different manner than the Cohen class.

1) A distribution from the L-CD is real if its L-generalized

autocorrelation function
//CL(0 m)a*E (u -

oL N =it (u—t)
" (u+ 2L)e dudf

LRAL(t,7) =

©)

is Hermitian LRAL(t,7) = LRA} (¢, ~7). This condition is
satisfied for cr(8,7) = ci (-0, —7).

2) The L-CD is time- and frequency-shift invariant if
cr(6,7) is not time- (¢) and frequency- (w) dependent.

3) If a signal is time limited to [t| < T, then
LDp(t,w) is limited to the same time interval if
Cr(t,7) = FTp{cr(8,7)} = 0 for |t/r| >1/(2L).

4) If a signal is band limited to |w| < wm, then the L-
CD is band limited to the same bandwidth if Cr(f,w) =
FT.{cp(6,7)} = O for |w/8| > 1/(2L).

5) If the distribution LDy (¢,w) corresponds to (%), then
LDy (at,w/a) is the distribution of |a|_2lfx(at), provided that
cr(0/a,a7) = cp(0,7).

6) The integral of LDy (t,w) over w is equal to the
generalized power |(t)|*", if cL(6,0) = 1.

7) If ¢£(0,0) = 1, then

1
L / / LDy(t,w)dtdw = / () dt = [l ()|
t w i

where ||z(¢ )||2L is the 2Lth power of a 2Lth norm of the
signal z(t) (generalized energy).

8) If c1(0,7) = 1, then the integral of LDy (,w) over time
is shown in the equation at the bottom of the page, where
X1(w) is the Fourier transform of z(¢).

9) The frequency domain form of LDy, (t,w) is

LDL(t,w)=i%///cL(o,r)X;(Lu—g-)
9 u T

- Xp(Lu+ —g)ejete_ﬁ(“_“)dudﬂdr

10) For the signal z(t) = A(t)exp(j¢(t)), the mean
frequency (w), f wLDy(t,w)dw/ f LDy (t,w)dw is equal
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to the instantaneous frequency (IF) ¢'(t), if c(9,0) = 1 and
dcr (6,7) -0

8r  r=0-"

11) ll'frequency-Modulated Signals Representation: The
ideal distribution, concentrated along the IF, is defined by
2w A%6(w — ¢/(t)) or by AW (w — ¢(t)) if a finite time
interval, determined by the window w(r) = FT~{W(w)},
is used. For the signal z(t) = Ae/*®), this form may be
obtained in the Cohen class of distributions, only if the IF is a
linear function ¢/(t) = at + b. The distribution that produces
this concentration is the WD (or the pseudo WD) [9], [12],
[14]. If the IF variations are of a higher order than linear,
then no distribution (with signal-independent kernel) from the
Cohen class can produce the ideal concentration.

Theorem 1: The L-class of distributions, for . — oo, is
equal to the ideal form A2LW (w — ¢'(¢)) for any frequency-
modulated signal z:(t) = Ae?(®) if the derivatives of the phase
function ¢(¢) are finite and if LILH;Q cr(8,7) = w(r), where
w(r) is a finite duration window w(r) = FT~1{W(w)}.

Proof: For a signal of the form z(t) = Ae’*®), expand-
ing ¢(u=+7/2L) into a Taylor series around u, up to the third
order term, we get

= %AZL/7/CL(9,T)

e]¢ (M)T J——H'——(s)(u-'ﬂ 3‘-4;»(3)(“ 72 ( )gejet—jw‘r—jQududadT
@)
where 71,7 are variables 0 < |ro| < |5%| If ¢®)(7)

and ¢™(r),n > 3 are finite and the variable 7 may
assume only finite values, then for a large L, the value

hm [exp(y i )(u+71)+¢(3)(”_”) z )] = 1 (since the con-

Vergence is of order 1 / L2, it turned out [8]-[12], [14] that it
is practically true for L > 4); therefore, we get

el

er(0, T)ew ()7 gibt—jwr=30% g dfdr. (8)

LDL (t, w)

LDLt(;Jg

Relation (8) may be written in the form
LDy (t,w) = A / Ot~ u,w— ¢ (w))du  (9)
where II1(t,w) is the FTop of cp(6,7). If Llim er(0,7) =

w(r), then Mp(t,w) = 6(t)W(w), and LDr(t,w) =
A2LW(w — ¢/(t)). This form corresponds to the ideal
distribution. Q.E.D.

/ LDy (t,w)dt = LI X1 (Lw)|? = / / / X(wL - 6; —

01 62

déy---dfr 1

—0r_1)X(61)X(62) - TEnit

- X(0r-1)
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12) Theorem 2: An Lth order distribution, belonging to the
L-class of distributions, may be obtained from its L /2th order
form if cz(0,7) = cp/o(u, 7/2)cr2(0 — u,7/2) for any u.

Proof: 1t is evident from (2) that

LAL(Q,T) = LAL/Q(H,T/Z) *g LAL/Q(H,T/z)

where g is a convolution in €. According to the theorem’s
assumption, it follows that

AfGL(e, 7') = MGL/2<0,T/2) *g9 MGL/2(0,7/2)

Taking the FTop of both sides, we get
LDL(t,w) = l / LDL/Z(t,w-!—)\)LDL/Z(t,w—)\)d)\. (10)
™ Jx

Q.E.D.
Note: The preposition of Theorem 2 is satisfied by the
Wigner, Rihaczek, Page, Levin, etc., type kernels [1], [2].

IV. SOME SPECIFIC DISTRIBUTIONS FROM THE L-CD

Here, we will define some particular distributions belonging
to the L-CD. A few interesting properties will be considered
for each of them.

A. L-Wigner Distribution

We have already given the definition of the pseudo L-WD
(1), which is the most important member of this class. Since it
is taken as a basis for the generalization, obviously, its kernel
is cr.(8,7) = 1, or for its pseudo form ¢, (0, 7) = wr (). The
properties, various derivations, realizations and applications of
the pseudo L-WD are studied in detail in [8]-[14].

B. L-Rihaczek Distribution

The L-class counterpart of the Rihaczek distribution, in the
pseudo form is defined as

LRD(t,w) = / a:L(t+-Z—)x*L(t)wL('r)e_j“”dT. (11)

T

This distribution is obtained from the general one with
er(f, 1) = ejeT/MwL(T).

For a frequency-modulated signal z(¢t) = Aexp(jé(t)),
with ¢(t) = a + bt + ct?/2, after expansion of $(t + %)
into a Taylor series, we get

LRDy(t,w) = A*8(w — ¢/ (t))%o
-FT{wL(T)ejCT2/(2L)} 2 AW (w - ¢/ ().

This could be expected since the kernel cr(f,7) =
e797/2Lay ;1 (1) — w(T) as L — co. However, the convergence
in this case is of order 1/L, which is worse than in the pseudo
L-WD.
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C. L-Spectrogram and L-Short Time Fourier Transform

The L-spectrogram is defined as the squared modulus of the
L-short time Fourier transform (L-STFT)

LSPECL(t,w) = |LSTFTL(t,w)|*
2

= / wL(T)xL(H%)e-WdT . (12)

T

Many specific properties of the L-STFT and the L-spectrogram
may be easily derived from the widely known properties
of the STFT. Here, we will focus only on the one that
treats the dependence of frequency and time resolution on
the window function. First, assume that the signal z(t) is
short and concentrated at ¢ = 0 into an interval At — 0.
If the window wy(¢) is time limited to |t| < T'/2 (where
T > At), then the L-STFT is time limited to |¢| < T'/(2L),
ie., its duration is d = T'/L. If we now assume a sinusoidal
signal z(t) = exp(jwot) and the same window, we get
LSTFTr(w,t) = Wi(w — wg)elt“ot, For example, let the
window be rectangular. The width of its Fourier transform
Wi (w) (the width of its main lobe) is D = 47 /T. The product
of the durations d and D (the form of uncertainty principle in
this case) is dD = 4z /L. This relation states that the L-STFT,
with a given L, cannot be localized in the time-frequency plane
with arbitrary small d and D simultaneously (representing the
resolutions in time and frequency directions). However, the
previous relation permits us to draw an important conclusion:
By increasing L, the product dD can be made arbitrary small,
meaning arbitrary high resolutions simultaneously in both
directions.

D. L-Reduced Interference Distributions (L-RID)

Although the WD satisfies most of the desired properties
[1], [21, it is rarely used in its original form. The main reason
lies in the very emphatic cross-term effects. These effects may
be even more emphasized in the L-WD for L > 1 since
the Lth power of signal may increase the number of cross
terms.” Unfortunately, these terms behave as the regular auto
terms. Thus, the straightforward generalization of the RID
distributions (Choi-Williams, Zao-Atlas-Marks, Born-Jordan,
Sinc, etc., [1], [2]) would reduce only a limited number of
cross terms resulting from the product of z%(¢ + 7/2L) and
z*t(t — 7/2L).

However, all cross terms may be efficiently reduced or
removed using recursive formula (10). Starting from the distri-
bution that is cross-terms free, we may control the cross-terms
appearance in the subsequent iterations using the function

2The L-Wigner distribution reduces the possibility of cross terms appearing
between two time separated components. Suppose that there are two signals
such that one exists for |t — ¢1] < T and the other for |t — t3| < Th. The

cross term in (1) is located at |t — 31%2‘ < Z%Tl and ‘%— 31;—t1‘ <

Zl“;—TZ. Keeping the window wy,(7) width unchanged, the possibility of
satisfying the second inequality is significantly reduced as L increases. For
L — oo, there is no cross term between time-separated components.
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P()) that is of lowpass filter type:

LDMy(t.w) =+ [ POY)
A
- LDy 5(t,w + A) LDy ja(t,w — N)dA. (13)

The numerical aspects of realization of distributions, which
may be written in form (13), are described in [7] and [10].

V. ON THE REALIZATION

In our previous work, we described two methods for the
L-WD realization. They can be directly applied to any dis-
tribution from the L-CD. 1) The direct method is based
on the signal raising to the Lth power, its oversampling L
times, and keeping unchanged the number of samples used
for calculation. Regarding the last assumption, this method
is not computationally much more demanding than the re-
alization of any ordinary (L = 1) distribution, but besides
the oversampling, its disadvantage is in increasing the number
of cross terms for multicomponent signals that do overlap in
time. This deficiency is overcome by 2) the recursive method,
“which is based on relation (13). This method provides the fol-
lowing advantages: The cross terms are reduced (eliminated);
oversampling is not necessary; and computationally, it may be
more efficient than the direct method. The particular numerical
examples realized by these methods, along with the details on
the methods, may be found in [7]-{14].

VI. CONCLUSION

The L-class of distribution, as a generalization of the
Cohen class, is presented. The L-distributions, corresponding
to the well-known distributions for time-frequency analysis,
are derived.
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