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Fig. 5. (a) Synthetic signal shown in Fig. | corrupted by additive white

Gaussian noise 5.3 dB below the signal. (SNR computed over the entire
signal.) The optimal cone length in the noise-corrupted case is approximately
the same as that shown in Fig. 3 (a), and the TFD shown in (c) is
noise-corrupted. but recognizably the same as in Fig. 3 (b); the close impulses
are still resolved, and the separation between the parallel sinusoids and chirps
is clearly visible. Like Fig. 3, the TFD is computed with a length 64 FFT
and an analytic signal.

else have varying frequency components that run nearly parallel in the
time-frequency plane. In fact, we have had some success in analyzing
signals that lack this simple character, but we note that the strength
of the cone-kernel distribution is in analyzing components that lie
along the r axis of the ambiguity plane, e.g., sinusoids. While the
CKD is a good general purpose distribution, it is important to keep
in mind its inherent strengths and weaknesses, because any adaptive
version will share those properties.

IV. CONCLUSIONS

This correspondence presents a technique for adaptively optimizing
the performance of the cone-kernel distribution that offers high
performance at a very modest computational cost. The algorithm
requires the calculation of the optimal cone length at each time; this
requires less computation than the FFT used in computing each time-
slice, making the adaptation practically free when a dense sampling
of the TFR is desired.

This single-parameter adaptive kernel TFR represents the “entry-
level” of adaptive time-frequency analysis, offering performance
similar to that of more sophisticated techniques, but at little cost
to the user above that of a fixed-kemnel representation. While more
expensive algorithms can achieve higher performance with some
signals, for many real signals we and others have found that this
simple adaptation gives the best results of any TFD known to us.
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sentation of local frequency and group shift using multidimensional
time-frequency distributions. In the second part of the correspondence,
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I. INTRODUCTION

One-dimensional time-frequency distributions (TFD) have been
intensively studied during the last decade. We refer to review papers
on the distributions for time-frequency analysis [1], [2]. Several
results dealing with the multidimensional case are reported in [2].

It is desirable that a multidimensional time-frequency distribution
(MTFD) of a signal x() satisfies the following basic properties

L / MTFD(3, 7) dVdVs = E, M
(27)" Jgn Jpn
L MTFD(3, 7) dV; = |z(7)|?
(27)" Jpn
MTFD(3, 7) dVi = | X (&))? )]
o

where E. denotes the energy of x(7); X (&) is the n-dimensional
Fourier transform of «(); and dV;; and dV; are the n-dimensional
differential elements of R™. An infinite number of distributions
satisfying (1) and (2) can be defined—the multidimensional extension
of the Cohen class of distributions [1].

The previous relations do not tell anything about the local distri-
bution of energy at a point (J, 7). In Section II we impose some
more specific requirements than the ones defined by (1) and (2).
Those requirements turn out to be very reasonable and meaningful
for the analysis of some classes of signals, both monocomponent
and multicomponent, as it will be shown in Sections II, III, and
IV. This analysis is used to develop an efficient multidimensional
time-frequency distribution, extending our previously defined one-
dimensional method [4], [6]-[8].

II. LocAL FREQUENCY PRESENTATION

Consider an n-dimensional signal
x(7) = g(7)e’ " ©)

with ¥ = (ri,r2.---,r,) € R" and g(7) slow-varying n-
dimensional function. The associated local frequency at a point is
defined as & = V&(7), with & = (wy,wa, - - - wy, ), while V denotes
the Hamiltonian operator. For this class of signals we will require
that the ideal MTFD has the local power |g(7)|> concentrated at
the local frequency

IMTFD(7, &) = (27)" |g(7)|* 6] — V(7). )

This form has already been defined and used in the one-dimensional
case [5], [7], [11]. We will now compare the commonly used TFD
with the one defined by (4).

A. Multidimensional Short Time Fourier Transform

The short time Fourier transform (STFT) of the signal x(7) is
defined by

2(7 + T (F)e AV, 5)

STFT(F,3) = /
where w*(7) denotes an n-dimensional, usually even real-valued,
window function. It will be assumed that w (7} = 0 holds outside the
bounded 7n-dimensional region D C R™.
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Substituting signal (3) into (5) and expanding (7 + ¥) into a
Taylor series' around 7, we obtain
1

(2m)" 9(PertO

STFI(F, &) =

2
X 6[& — VO(7)] 45 W(3) %2 FI‘[e’g—v)—UZ Wn]

©
where *5 denotes an n-dimensional convolution operator with respect
to w1, wa, -+, wn, and g(F) is treated as a constant inside the window

w(r), ie., g(F + Dw(?) = g(Fw(@).

If the second and higher-order partial derivatives of & (7) may be
neglected in (6), then the associated spectrogram (squared magnitude
of the STFT) becomes

SPEC(7, &) = |STFI(7, &) [* = |¢(7)|* W?[3 — V&(7)].
)
Observe that the spectrogram (7) exhibits all desirable properties of
the ideal distribution (4), provided the behavior of W?( &) is close to
(2m)"8(). If, on the other hand, higher-order partial derivatives are

not negligible, the spectrogram contains artifacts even for the ideal
behavior of W (&).

B. Multidimensional Wigner Distribution

Another distribution that is very commonly used in the time-
frequency analysis is the pseudo-Wigner distribution (PWD), defined
by

PWD(7, &) =/ x(F+ 7/2)2" (F — 7/ 2)w.(T)e 7 dVy,

with w,(7) = w(#/2)w"(~7/2). 8)

n

For signals (3), upon substitution in (8) and expansion of ®(i"+ 7 /2)
and ®(7 — ¥/2) into Taylor series, the following expression for the
PWD is obtained

PWD(7, &)
= G P81 - V() o5 WD)

/2)903 (0 = -
y FT[FJ“—i%—L@(n)w(m]]. ©)

The PWD provides an ideal time-frequency representation if the third-
and higher order partial derivatives of ®(7) are negligible. This is
obviously a significant improvement over the STFT.

C. Cohen Class of Distributions

We have seen that the WD of a signal whose phase does not contain
third and higher-order terms produces the ideal space-frequency
representation. We may ask then, whether there exists another distri-
bution from the Cohen class with the same ideal representation for the
above shape of signals. The Cohen formula, defining the associated
class of distributions for n-dimensional signals, is

o . 1 Lo ‘oo o
CD(7. &) = W/ / / (i + T/2)x™ (7 — 7/2)
X o(f, e~ HTTIFTE gy gy av, (10)

!"Taylor series for an n-dimensional function is of the form

m-—1 i Favalud
=3 @@(r‘w (l’%qn(m

(7 + ) '
=0 :

with7 =74+ 7, and 0 < vy < vy, foreachh =1,2,..-,n.
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with 7. 7.0. 7.2 € R", while (’((;. i) represents so called kernel
function for an n-dimensional case. Assume now that the phase
function ®(7) is quadratic, i.e., that it possesses the following

property

Ve =0 for i>3. ie VAN =iB+d (1D
where B € B"*" is a constant symmetric matrix, while d is a row
vector.

Expanding the functions ®(#+ 7/2) and $(& — */2) into a Taylor
series around i, and taking into account (11), integration over # and

@ produces

CD(F. 2) = |g(M)? / (=B, Fye B gy
JRrn
(12)

Equating the right-hand sides of (12) and (4) leads to the conclusion
that the function «(—#B. ) has to be equal to unity. For a given
signal, it means that the kernel (f. ) should be equal to unity
on the n-dimensional subspace II: §=-B of the ((f. i) space,
while it may take any value outside II. But if one wants to use
the signal independent kernel (as it is done in this paper), then
¢(f.7) = 1 should hold for any B, i.e. everywhere in (4,7)
space. The distribution from the Cohen class, with the unity kernel,
corresponds to the WD (for one-dimensional case see [6], [7], [11]).

The above analysis proves that out of all distributions from
the Cohen class, the WD is the only one that produces the ideal
representation of the signals with quadratic phase.

III. ANALYSIS OF MULTIDIMENSIONAL MULTICOMPONENT SIGNALS

Let us consider now an n-dimensional multicomponent signal
given by

»

r(F) = Z:!/:(l'”)f’ﬂ”(ﬂ>

=1

(13)

where the functions ¢; (7). i = L.---
as () in (3).
In analogy with the previous considerations, the spectrogram for

signal (13) may be shown to be

SPEC(F7. 2) = Zi(,‘ (M gu(7)

=1 k=1
x W& — Vo, (i

.p, belong to the same class

7= (7))

FW™ & = V(7))
(14)
where we have neglected the artifacts due to higher-order partial
derivatives of ®,(r).i = 1.2.---.p, i.e. V®,(F) is treated as a

constant vector inside « (7).

Generally, the spectrogram contains the cross-terms, but they are

absent, provided the condition
WS = Vo (MW T[S - VPi(
|V, (F) ~

)] = 0 for any & and ¢ # k or
VoA > W (15)

is satisfied; || - || denotes an appropriately defined norm in R". This
means that cross-terms do not appear if the n-dimensional distance
between local frequencies is greater than the maximal width of the
W (Z) along the direction f = V&, () — V&,.(7), connecting the
i-th and k-th local frequency, Fig. 1. In that case

SPEC( r:>~2|4,mj W22 - Vo.M (16)
=1
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Fig. 1. Illustration of energy location in spectrograms without cross-terms:
(a) separable and (b) nonseparable window w(F).

Observe that the PWD, defined by (8), may be expressed as

PWD(F.J):WL/ STFT(7. & + §)STFT" (7,3 — §)d
o

n

V. (17)

Substituting expression (6) into (17), appropriately adjusted to ac-
count for the class of signals defined by (13) and neglecting the
artifacts, we obtain

7o ! - - Fy—<b g (F
PWD(7.3) = — 3= S gu(7)ge(7)e/ 0000

x / W3+ 6 — Y &:(7)
X W3 = § — V&, (7)] dV.
(18)

We will now use the above expression to analyze cross-terms in the
PWD for the n-dimensional multicomponent signals. The integrand
in (18) is nonzero for

I+ -Ve(M €D, and I—0-VI(F €D (19
meaning that PWD(#. &) # 0. for
@€ Du(i k) : (3 — [VO:(7) 4+ V&, (7)]/2) € Dy,
and
€ Dolik): (6= [VO,(7) — VO(M]/2) € D (20)

where the Fourier transform W' () of w () is assumed to be nonzero
only inside a bounded region D,. C R", and D,. is convex and
symmetric with respect to the origin (i.e. w(7) is real).

This means that the auto-terms (i = k) are concentrated within
the region centered at the local auto-frequencies of each component
of signal (13), ie., at & = V(7). i = 1,2,---.p, while the
cross-terms are centered between the corresponding auto-frequencies.
Relation (20) also implies that, along the axes of the n-dimensional
convolution ¢, all auto-terms are concentrated at § = 0 and its
neighborhoods. The cross-terms are dislocated from the 5 origin.
Having this in mind, we conclude that the cross-terms may be
removed from the PWD of a multicomponent signal, and at the same
time the integration over auto-terms performed, if the convolution



1722

Fig. 2. Auto-terms, cross-terms, and window P( é’) support illustration in §
space.

-~

(17) is evaluated within an n-dimensional window function P(6), in

the following way

-

MWD(7,3) = Win/ P(§)STFT(F,& + )
Rn

x STFT" (7, & ~ §) dVj 103}
where the region of support D,, of the window function P(G-‘) must
comply with the conditions defined in (20), i.e., D, D D,, = Dy (4, i)
and D, (" De(i, k) = @ for i # k, Fig. 2.

The distribution (21) is derived from the condition that its auto-
terms are equal to the auto-terms in the WD. But, in contrast to
the WD, this distribution is cross-terms free (under the described
conditions). Thus, the obtained distribution is equal to the sum of
the WD of the individual components. Note that the distribution (21)
does not satisfy the marginal properties in the case of multicomponent
signals. Many other distributions have been developed with the
purpose of the cross-terms’ reduction, (1], [12], [13], [16]. A detailed
comparison of these distributions in the one-dimensional case may
be found in [9].

Distribution (21), besides its efficiency in cross-terms removal and
the preservation of the auto-terms presentation quality as in the WD,
leads to a numerically more efficient method than the WD realization
itself. This will be shown in Section VI (for one-dimensional case
see [4], [6], [7]).

IV. GROUP SHIFT

If the signal 2(7) is nonzero-valued within the short intervals of
the axes ry, h = 1,2,---,n, then the Fourier transform of z(7) is
more convenient tool for the presented analysis. Let us consider the
signal () whose Fourier transform X (J) is of the form

X (2) = R(@)e’*® 22)
where R(J) is an n-dimensional slow-varying function, i.e., it may
be treated as a constant inside D,,. The group shift, a concept dual
to the local frequency, is defined as 7y = — V(). The IMTFD for
the signals of form (22) may be defined, in analogy with (4), as

IMTFD(#, &) = |R(3)[*8[7 + Vo (). (23)
A definition of the STFT in the frequency domain is
jET o L e
STFT(7,3) = —— X6+ L‘J)W’(e)e]erd% 4
(2m)" Jpn
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while the PWD in an n-dimensional frequency domain is

1

PWD(7, &) = o

/ X(3+6/2,7X"(3 - §/2,7)
-

x T AV x5 Wa(@). (25)

Thus, we may easily conclude that all the earlier derived properties
(6), (7), (9), are also valid in the dual sense.

V. ANALYSIS OF THE ALIASING EFFECTS

The aliasing effects are interesting in the WD [2]. Because of
the quadratic nature of the WD, its direct realization requires the
signal to be oversampled by a factor of two, with respect to the
sampling interval defined in the sampling theorem. The analytic part
of the signal has been commonly used as a way to avoid aliasing (or
oversampling) in the WD. Recently, some other techniques for this
purpose have been derived (for a reference list, see [14]). Here, we
will show that the aliasing components appearing in the WD may
be eliminated, using the distribution (21), in the same manner as the
Cross terms.

Consider multidimensional signal (), obtained by sampling a
continuous signal z(7).

Tl Tn, - K T)

><l5(7‘1—k'1T1,"‘-Tn_knTn) (26)

where T}, represents the sampling period along the h-th axis, A =
1,2,-++ n.

The Fourier transform of z4() is a periodic function along all
frequency axes, with the corresponding periods w,, = 27 /T4, and
has the form

Xa(3) =Y X[(S + Fpi] @7
Rk

with Jpk = (kiwp1, kawpa, - -+, knwyn ), while the sum over R*

represents an n-dimensional sum over the coordinates of the vector

k = (ki,ka, -, kn). We see that the formal analysis is the same as

for multicomponent signals.
The STFT for the sampled signal (3) is of the form

STFI(iiz. @) = 2(iir) Y W[(@ + Fpr ~ V() ey ] (28)
Rk
where we have neglected the distortions due to higher-order partial
derivatives of the phase function, i.e, V®(7) = const, and 7y =
(anl,nsz, R ,n,.Tn).
Combining the previous relation with (17), the PWD of discretized
signal is obtained

PWD(iir,J) = Z Z I.‘J(f_:”?

RF1 Rk2

X WIS+ +Tpr, — V() rmiip ]
R

X W3 = 0 + ok, — VE(F) ey ] dVy.
(29)
Using similar procedure as in the cross-terms analysis, it may be seen
that the integrand is nonzero if the following holds
~Wh/2 — (kin — kan)wpn /2 < 84,
< VV},/? - (klh - kgh )wph/Q.
h=1,2,---.n (30)
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where W, is the width of W' (Z) in the w,, direction. It is obvious
that the auto-terms (A1, = k.1, ) appear due to the integration around
the § origin. The closest aliasing components along #), axis are those
for kin — kar, = E1. Obviously, they may be eliminated by using a
window P(6), equal to zero along the 8, axis, for the values of 8,
outside the interval |6, | < wpr, /2—W) /2. Observe that this condition
is usually significantly relaxed, as compared to the condition for
eliminating cross-terms, Fig. 2. Thus, the window P(6) satisfying
the previous conditions guarantees the elimination of the aliasing
components, i.e., the oversampling is not necessary.

VI. NUMERICAL CONSIDERATIONS FOR TWO-DIMENSIONAL CASE

We will compare the modified WD with the conventional PWD,
with respect to the number of operations needed for their respective
numerical computations. To simplify the presentation, we will con-
sider the two-dimensional case, which is presently the only one of
practical interest.

The discrete two-dimensional PWD is of the form

\VD(II[JI;}.L'(.L’Q)
2N 12N

=4 Z Z g+ mony )T (g — myons —my)
=0 mg=o

(’7,%(&, kg

x (3n

where N is the number of samples, determined according the
sampling theorem.

The modified WD (21), may be expressed in the discrete form for

a rectangular window [%(/,./.), as

MWDy ony hy k)
= [STFT(n 1. na. by ko)

Lo
+23 N Real{STFT(ni.no by + iy by + i)

=o =1

X STRT (ny.nocky — iy ko — i)}

I3 o
+23 3" Real(STFT(ni. oo by + i1k + i2)

P —
X STFT" (ny.na. by — iy ko — i)}
(32)

with Ly = L; = L. where 2L, + 1 and 2L, + 1 represent the
widths of two-dimensional window °;(/;./,). Sampling in the STFT
is defined by sampling theorem, and so is in the modified WD due
to Py(iy.iy).

The computation time may be reduced using an iterative procedure
for computation of the STFT

STET(ny.no + 1ok k)
= {STFT(ny.na. by k) + Fo [elnina + N)]

=Sy ["'(”L Ilz)] }(r/%":

STFT(ny + Long. by k)
= {STFT(ny.ny. ki k) + Foyle(ny + Nony)j

- fu_,[d'(m.112)]}("%“ (33)

where F,, , is one-dimensional STFT over #,,,, and the window «' ()
is shaped as a rectangle.

Numbers of numeric operations required for the direct realization
of the PWD defined by (31) (using the FFT routines), as well the
numbers for the modified WD, (32), are given in Table L

Let us compare the number of multiplications needed for the
computation of (31) with that in (32), taking into account (33).
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TABLE 1
THE NUMBERS OF COMPLEX OPERATIONS REQUIRED FOR THE REALIZATION OF
WIGNER DISTRIBUTION AND MODIFIED WIGNER DISTRIBUTION

Method Complex additions | Complex multiplications
Direct WD calculation 4N2(log,N+1) 2NP(log N+2)
Proposed method N2(2log,N+L34L) | NP(log N+L2+L+1/2)
Proposed method using

2 2
recursive STFT realization N(LP+L+2) NAL2+L+372)

Fig. 3.

Two-dimensional signal.

The savings by the proposed method are achieved if the following
inequality holds

2(log 2 N +2) > (L* + L+ 3/2). (34)

To illustrate this point, take, for example, N = 64. The savings in
the number of computations are achieved if L < 3. i.c., the width of
the window I’(/y./2) is less or equal to 7 X 7. Superiority of the
proposed method is even more evident if we consider the required
number of additions.

VIL

To illustrate the proposed method, consider the two-dimensional
signal

NUMERICAL EXAMPLE

flry) = cos20m(a — 0.75)% 4 227 (y — 0.75)%

4 0.5/ (—100 costmr /2) = 100 con(my/ )]

in the range:|.r| < 0.75. |y| < 0.75. This signal belongs to the class
(13). Fig. 3 shows its real part, combined with the signal

feloy) = cos{1000m (e + 0.5)% + (y — 0.5)*]}

whose domain: |+ + y| < 0.1. |y — + — 1} < 0.1, is comparatively
small, i.e., its Fourier transform may be treated as the one described
by (22).

We have applied the Hanning window whose widths along . and
y axes are 11, = IV, = 1. For the computation of the STFT
we have taken N = G4 samples, while the corresponding number
for the computation of the PWD is M = 2N = 128 samples.
The STFT, the PWD and modified WD are computed at the point
(r.y) = (—0.25.-0.25), and the results are presented in Fig. 4.



1724

®)

(d)

Fig. 4. Local frequency representation of a two-dimensional signal: a)
spectrogram, b) Wigner distribution. ¢} modified Wigner distribution L = 8,
and d) modified Wigner distribution L = 3.

VIII. CONCLUSION

Comparison of the commonly used multidimensional time-
frequency distributions with the distribution which ideally represents
the local frequency or group shift is presented. A numerically
efficient method for cross-terms reduction or removal in the Wigner
distribution is proposed.

The multidimensional time-frequency signal analysis may be useful
in many complex practical and theoretical problems. From the numer-
ical example it is obvious that one instance where these distributions
may be used is the local frequency image analysis. Recently, the
electromagnetic field, scattered or diffracted from the finite structures,
has been analyzed using the one-dimensional time-frequency (space-
wave number) distributions [15]. These distributions are suitable
only when the structure is finite in one dimension. However, if the
structure is finite in more than one direction (finite grating strip,
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open waveguide, . . .) then the need for multidimensional time-
frequency analysis is apparent. Also, if a one-dimensional signal
propagates through a nonhomogenious media, then the variation along
the direction of propagation is equally important as the time variation
of spectral components. In this case, for a complete analysis, the
signal should be known over both time and space. Thus, one can
make conclusions not only about the signal but also about the media
of propagation, which in some cases may be the primary research
issue.

Multidimensional approach to the physical problems provides
deeper insight into the nature of a process, as well as the possibility
of taking into account the more complex forms. But, it also requires
very complex multidimensional mathematical techniques. One of
them is the multidimensional time-frequency analysis, which may
gain importance with further development of computer hardware and
software.
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