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point w; and B, i.e.
N/2  N/2-1

’lL‘(wi,ﬂk) = Z Z ¢(m’ T)e—j(wir+20km)

m=—N/2 r=—N/2

(24)

where N = 2L,.x, and
_ 2mk 2

b= —wi= 3

where i,k € {-N/2,---,N/2 —1}.
Then

P(wi, 0x) =0 for |w;|>|0kl. (25)

Equation (24) can be computed using the DFT applied to Hermitian
-autocorrelation functions as proposed in [10]. If the frequency support
constraint is included in the problem, minimization of the cost
function (9) can no longer be performed over each lag separately.
In this case, the solution can be obtained via matrix formulation of
the problem [11], [12], in which the rows of the kernel are stacked
to form a vector. With this formulation, the problem becomes

Minimize w”w  subject to C7w = f. (26)

In the above notation, “H” denotes Hermitian, the variance (9)
equals w7 w, and the t-f linear constraints are represented by the
constraint system CPw = f, where C and f are, respectively,
referred to as the constraint matrix and the gain vector. The linear
constraints are not all independent, thus C is not of full rank. The
solution is, therefore, given by [13]

w=(C*)f @n

where C# is the pseudo-inverse of C.

The optimum kernel satisfying (26) is referred to as the minimum
variance kernel. This kernel is shown in Fig. 2 in the time-lag
domain, the ambiguity domain, and the frequency-frequency domain,
for Lnax = 28.

Next, we presents a simulation example that illustrates the kernels’
statistical performance for the case of a sinusoid in noise. The time-
frequency distributions of several kernels have been simulated for
a complex sinusoid of fixed frequency in circular complex white
noise. The sinusoid is of 0.5 dB and 100 Hz with the sampling
frequency 1 kHz. For each kernel, 20 realizations of the time-
frequency distribution have been plotted in Fig. 3. The PWV kernel
performs the worst. The variance of the ZAM distribution is still the
highest, but this partially compensated for by the peak being large.
The SPWYV distribution appears to be the most stable, despite the
fact that the spectrogram variance in noise is lower. The results show
similar trends as in Fig. 1, even though these runs are for the signal
plus noise case.

V. CONCLUSIONS

We have presented analytical expressions for the variance of an
arbitrary time-frequency distribution for circular complex Gaussian
stochastic processes. Using finite-extent discrete-time kernels, the
Born-Jordan distribution has been found to have the lowest variance
for a white-noise Gaussian process, given that the desirable t-f
properties are satisfied except that of the frequency support. Its vari-
ance increases logarithmically without limit for improved frequency
resolution, i.e., as more lags are included in the estimate. The kernel
yielding minimum variance under all t-f constraints is derived using
matrix representation and leads to a higher spectrum estimate variance
than the pseudo Bormm—Jordan distribution.
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A Method for Improved Distribution Concentration in
. the Time-Frequency Analysis of Multicomponent
Signals Using the L-Wigner Distribution
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Abstract— The energy location in the Cohen class of time-frequency
distributions is analyzed. If the instantaneous frequency is linear, then
only the Wigner distribution produces the ideal energy concentration. The
scaled version of the Wigner distribution (L-Wigner distribution), is used
to improve the time-frequency representation of signals with nonlinear
instantaneous frequencies. In the case of multicomponent signals, the
cross terms, appearing in the Wigner distribution and in the L-Wigner
distribution, can be easily removed or reduced in a computationally very
efficient way. The theory is illustrated on the numerical examples with
p t noisy signal

I. INTRODUCTION

Time-frequency distributions have been intensively studied during
the past decade. We refer to several review papers on the distributions
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for time-frequency analysis [1]-[4]. It is desirable that an energetic
time-frequency distribution (TFD) of a signal z(t) satisfies the
following basic properties:

L/” /°° TFD, (w, t) dw dt = E, )
27 —o0 J—o0
1 /oo 'I'I:D;E('u.).,t)du;:|’Jl'(t)|2 2
2 J_ oo
/w TED, (w. ) dt = | X ()] 3)

where E, and X (w) denote the energy and Fourier transform of z(t),
respectively. Note that an infinite number of distributions satisfying
(1)—(3) can be defined [1], [9]. Since the above properties do not tell
anything about the local distribution of energy at a point (w, t), we
will impose some more specific requirements than the marginal ones
given by (2) and (3).

Consider a complex signal x(t)

z(t) = r(t)e’*® )

with a slow-varying amplitude r(¢) compared to the phase ¢(¢)
variations (|r'(t)] < |¢'(¢)]). The instantaneous frequency of x(t)
is defined by wi(t) = (d¢(t)/dt) = ¢'(t). The existence of ¢'(t)
is assumed. If the signal z(t) is real, its analytic part, which can
be written in form (4), will be used. For this form of signals, we
will require that the ideal TFD has the instantaneous power [r(t)|?
concentrated at the instantaneous frequency:

ITED(w, t) = 2x|r(t)|* 6[w — &' (1)]. (5)

Additional details on the definition of ideal distribution may be found
in [9].

In the section that follows, the commonly used distributions are
compared with (5). The multicomponent signals and cross-term
effects are studied in Section III. The analysis is illustrated on
numerical examples.

II. INSTANTANEOUS FREQUENCY REPRESENTATION

A. Cohen Class of Time-Frequency Distributions

As it is known, all time-frequency (shift covariant) distributions
satisfying the marginal properties belong to the general Cohen class
of distributions (CD) [1], [2], [9]:

CD(w,t):% 7 7 / (8, 7)z(u + 7/2)

—00 —o0 —o0

cet(u = 7/2)eTITIOTH g dr (6)

where c(#, 7) is an arbitrary kernel function. The marginal properties
are satisfied if ¢(6,0) = 1 and ¢(0,7) = 1. The ideal distribution
(5) may be easily translated into form (6) (taking the 2-D Fourier
transform of ITFD(w, t) and then its inverse 2-D Fourier transform)
as

0o 00 00

ITFD(w. t) = % / / / 1.‘2(1‘)61@(:‘)7—

—00 —00 — o0

e TINTIRTHIO 4y q9 dr. %)

Comparing (6) and (7), while having in mind the uniqueness of
the Fourier transform, we get that the signal defined by (4) has the
distribution equal to the ideal one iff

o8, T)el T misuT/2) o' (T ®)
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where r(t) is treated as a constant inside the time interval determined
by the kernel, i.e., 7(u + 7/2)7 (v — 7/2)e(8,7) = % (u)c(8,7).

If we restrict the analysis to the case of signal independent kernels
(which is practically important), we get that the ideal distribution
may be obtained only if ¢z(3)(u) = 0 and c(8, 7) = 1. The previous
requirements are met only by the Wigner distribution of the signal
with a linear instantaneous frequency &(t) = at*/2 + bt. For this
signal, we get

oo

CD(w. 1) = ()] /

—oc

c(—ar. T)e_’[“"_qb/(t)]r dr. 9)

If we assume that the instantaneous frequency ¢'(t) is a constant,
i, ¢'(t) = b, then substituting @ = 0 into (9), it is easy
to conclude that the CD is equal to the ITFD if ¢(0.7) = 1.
This condition is fulfilled in many distributions from the Cohen
class (generalized Wigner distribution, Rihaczek distribution, Pages
distribution, Choi—Williams distribution ... [1}, [6], [9], [13]).

B. L-Wigner Distribution

We have seen that the Wigner distribution is the only one from
the Cohen class (with the signal independent kernels) having the
ideal representation when the instantaneous frequency is a linear
function. A way to improve the time-frequency representation of
signals with a nonlinear instantaneous frequency is in the frequency
linearization around a considered time instant ¢, provided that the
value of instantaneous frequency is not changed. A distribution
having these properties is the pseudo L-Wigner distribution (PLWD),
which is introduced as

I T
#(t+31)

2" (t - %) wi{r)e™ T dr

PLWD(w, t) = /OC

—o0

(10)

where wy, (7) is a window, which is usually a real and even function,
and L is any integer greater than 0. Taking L = 1 in (10), the pseudo
Wigner distribution (PWD) is obtained.’

For the signals described by (4) and expanding ¢(t + 7/2L) and
o(t — 7/2L) into a Taylor series, we get

PLWD(w.t) = % |l'(t)|2L(S[w‘ — &' ()] *0 WL (w)*,
F’I‘{exp [j <¢(3)(t +71)

+ ot -m)/@ L)} an
with the following notation: FT[] is the Fourier transform (FT)
operator; W(w) = FT[w(¢)]; 71,72 are variables in the interval
[0,7/2L]; and *,, is a convolution in w.

The artifacts in the PLWD are due to the terms of third and higher
order derivatives of the phase function (the odd ones). They are
divided by the factor L™ ™!, Values L > 1 produce a significant
improvement of representation with respect to the PWD (L = 1).
Note that for a large L, the PLWD approaches to the windowed ideal
distribution for any frequency modulated signal.

C. L-Class of Time-Frequency Distributions

The idea of local linearization of the instantaneous frequency may
be applied to the Cohen class of distributions, defining a generalized

IRecently, it has been shown that the L-Wigner distribution is a special,
and in some ways, optimal case in the analysis of multicomponent signals
using the multitime Wigner higher order distributions [14]. The properties of
the L-Wigner distribution are analyzed in [10].
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Fig. 1. On-line realization of the L-Wigner distribution: (a) Signal to STFT recursive transformer; (b) STFT to modified Wigner distribution transformer; (c)
modified LWD (of order L) to modified LWD (of order 2.L) transformer; (d) complete system. The windows w(7) and P(8) are rectangular (with Ly = 2).

L-class of distributions:

e TIOTITORI0U gy dr df. (12)

Taking c.(6,7) = 1, the L-Wigner distribution is obtained, while
cL(8,7) = wr(r) produces (10). The properties of the L-class of
distributions, along with the specific distributions belonging to this
class, are analyzed thoroughly in [16].

III. MULTICOMPONENT SIGNALS

It is known that an annoying trait of the Wigner distribution is in
the presence of cross terms [6], [7], [13]. The well-known cross-term
effects may be even more emphatic in the PLWD because the Lth
power of the signal introduces additional signal components. That

is why the PLWD in form (10) may be useless for multicomponent
signals. However, in the next analysis, we will show that the cross
terms may be easily reduced or removed, preserving the appealing
properties of the PLWD.

Let us consider multicomponent signals of the form

M

2(t) =Y ri(t)el O

i=1

13)

where 7;(t) are the slow-varying amplitudes as in (4).
The basis for the analysis that follows is the short time Fourier
transform (STFT), which is defined by [1]-[5]

oo

STFT(w. 1) = / (t + Tyw(r)e™" dr, (14)

—oo

For the signal x(t) given by (13), after the expansion of ¢;(t+ 7)
into a Taylor series, assuming that the variations of »; (¢t + 7) inside
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Fig. 2. Time-frequency representation of a multicomponent signal: (a) Spectrogram: (b) pseudo Wigner distribution; (c) modified pseudo Wigner
distribution—MPWD; (d) modified pseudo L-Wigner distribution (MPLWD) with L = 4, with the Hanning window w(7), whose width is T = 1; the
rectangular window Py(:) whose width is Ly = 3; number of samples N = 64.

the window may be neglected (r;(t + 7)w(7) = r;(t)w(7)), we get

M
STFT(w.t) = 5= 3 ri(01e’®” Vsl - 61(0)]

™
=1

o W(w) v, FT{?® 072 (15)

From (15), we see that the absolute value of the STFT of a signal
component is of the form similar to (5) convolved with the Fourier
transform of the window and higher order terms of the derivatives
of ¢(t), starting with the second one.

From the STFT, which is given by (15), assuming that ¢;(t + 71 )
is negligible inside the window, we get the spectrogram

M M
i16$2)
SPECI.) = 355 it 071700

=1 y=1

SWlw = 4(8)[W*[w — ¢4 (2)). (16)

Suppose that the values of W (w) may be considered to be zero for
lw| > Wg/2 (where W is the width of W (w) or the width of its
main lobe). In that case, we can distinguish two cases:

1) If min [|¢;(¢)—¢}(t)]] > Wp forall 4, j and a given t, then the
signal energy is concentrated only in the auto terms centered
at the auto frequencies

2) If, for any ! and k|$}(t) — ¢} (t)| < Wg, then between the
instantaneous frequencies ¢;(t) and ¢;(t), energy of cross
terms r;()e’?" Y and ri(t)e??+?) exists.

Next, we will analyze the PWD ((10) with L = 1), which, for real
windows, may be written using the STFT as

oc

PWD(w, t) = % / STFT(w + 6, t)
: STF?*(W' —9,t)d8. an
For signals whose spectrogram is of form (16), we have
PWD(w.1) = - f: EM: ri(t)r;(t)eltei (D=5 0]
Lori Jj=1
-]mlvw+0—¢uﬂ
~Wq@—9—¢anw- (18)

In the double summation in (18), the terms different from zero are
those satisfying the following relations:

|w+ 8 — i (t)] <Wg/2

and
lw— 86— ¢i(t)] <Wg/2. a19)
Summing the previous inequalities, we get
it (¢
- M;M < Wg /2_ (20)

The Wigner distribution exists around the frequencies w = (¢i(t) +
@%(t))/2 for all i and j. It is evident that for i # j, the cross terms
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Fig. 3. Instantaneous frequencies obtained by the MPLWD with L = 4 (Contour graphics of Fig. 2(d)) along with the exact ones (solid lines in the

middle of contours).

exist even if ¢;(t) and ¢’ (t) are very far apart (in contrast to the
spectrogram). Cross terms are centered between the instantaneous
frequencies of the 7th and jth signal components.

It is extremely interesting to investigate the location of the compo-
nents contributing to the cross terms on the 6 axis (18). From (19),
we obtain
Gt — 90

2

8 < Wg/2. (21)
The auto terms (for ¢ = j) are obtained by the integration around § =
0 in the interval || < Wpg/2, while the cross terms are obtained,
integrating along the interval |6 — [¢}(¢t) — ¢5(1)]/2| < Was/2.
This is an interesting conclusion because we can eliminate cross
terms between the components whose frequencies are further apart
than 2Wpg. Using the window P(#) in the integral (17), which
will have the width Wp (P(8) = 0 for |§] > Wp/2) such that
Ws < Wp < |6i(t) — ¢(t)] — W, the integration over auto
terms will be performed completely (they will be the same as in the
WD), and at the same time, the cross terms between the :th and jth
components will be avoided. In that way, we arrived at the method
for time frequency analysis

MPWD(w, t) = /w P(6)STFT(w + 0, t)

K

-STFT*(w — ,t) df 22)

which will preserve the appealing properties of the Wigner distribu-
tion but without cross terms. In [8] and [9], it has been shown that
(22) may be realized in a numerically very efficient way.

Similarly, the L-Wigner distribution can be understood as a con-
volution of the Wigner distributions. For L = 2, the modified pseudo
L-Wigner distribution (MPLWD) for cross-term elimination is in the
form

MPLWD(w, ) = % / Pi(6)MPWD(w + 6, )

- MPWD(w — §.t) df 23)

where the properties of window P, (#) are the same as the properties
of P(#) in (22). Convolving two L-Wigner distributions with L =
2, we get the L -Wigner distribution with L = 4, and so on. That
way, we can achieve the high distribution concentration, while at the
same time avoiding the cross terms.

The discrete forms of (22) and (23), assuming that P(8) is a
rectangular window, are

Ld
DMPWD(k,n) =DSPEC(k.n) + 2 Z
i=1
- Real{DSTFT(k + i,n)
- DSTFT" (k — i,n)} (24)
where Ly is the width of the discrete form of P(8), which will be
denoted by Py(i).
The discrete Modified pseudo L-Wigner distribution (DMPLWD),
with L = 2, is

Ly
DMPLWD(k, n) = DMPWD(k,n) +2 Y
=1

- {DMPWD(k + i, n)
- DMPWD(k — i,n)}. (25)
For L = 4, 8, --- the DMPLWD may be easily calculated
repeating the procedure described by the last relation. A complete
block diagram for on-line realization is shown in Fig. 1. Note that in
this realization, the STFT is calculated using the recursive formula

(details may be found in [5], [8], [9]):

snwmm+4)=P(n+1+§)—f(n+1_%)]

(=1)* + STET(k, n)e 37 /MK, (26)
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Fig. 4. Time-frequency representation of a multicomponent signal whose components intersect: (a) Spectrogram; (b) pseudo Wigner distribution; (¢) modified
pseudo Wigner distribution—MPWD; (d) modified pseudo L-Wigner distribution (MPLWD) with L = 2. With the windows as in Fig. 2.

IV. DECOMPOSITION OF A MULTICOMPONENT SIGNAL

The previous analysis may be used for a decomposition of x(t),
which is of the form

A
wt)y=3 Rie/®iV @n
i=1

where R; are unknown constant amplitudes, and ¢;(t) are unknown
phase functions, which are to be determined.

This problem may be resolved using the MPLWD. The only
precondition that follows from the analysis of the MPLWD is that
the instantaneous frequencies ¢;(t) and ¢ (for any i # j) are
apart at least 2Wg for all ¢ in the considered time interval. Note that
6L(t1) = ¢'(t2) is allowed to be for different and £5.

Using MPLWD ((10) and (11) calculated by (24)—-(26)), we may
determine ¢.(t) for each i and t in the considered interval. The
problem now becomes the well-known one of a signal z(t) expansion
on a set of known basis functions. Note that ¢;(t) may be obtained
from the PLWD (i.e., from the ¢:(t)) within an integration constant
C;. This constant will be considered to be a part of R;. Thus, we have
the unknown complex coefficients A; = Rie’Ci. The coefficients A;
will be determined, minimizing the mean-square error [S] from the
set of linear equations

(r1.27) A1 + (w2, 2] ) Ao + - + {am. ;)Y An

= (x(t), r7) i=12,--- .M (28)

where (zi,z%) denotes the scalar product of ; and x;, with z; =
exp [ f:l ¢‘)§(t)dt], and t, is any time instant in the considered
interval.

V. NUMERICAL EXAMPLE
In the numerical example, a multicomponent signal of the form
e(t) = EAjIQw(t‘OAl)Q + e cos (2mt)—12x(141.3)%]

—10wtsign(sin(wt/2)+42xt]

+el (29
is considered. We will add some noise; therefore, the signal x(¢) +
n(t) will be used for calculations (n(t) is a Gaussian white noise with
SNR= 10 dB). The STFT (Fig. 2(a)) and the PWD (Fig. 2(b)) using
a Hanning window are calculated, as well as the modified pseudo
Wigner distribution (Fig. 2(c)) and Modified pseudo L-Wigner dis-
tribution (for L = 2 and L = 4 (Fig. 2(d)) with the same number
of samples. The improvement of distribution concentration around
the instantaneous frequencies, as well as the cross-term reduction
(removal) using the madified pseudo L-Wigner distribution, is clearly
shown in Fig. 2. The derivatives needed for signal decomposition,
which is obtained by modified pseudo L-Wigner distribution (L = 4),
as well as the exact ones, are given in Fig. 3. The coefficients obtained
from system (28) are A, = 0.9847¢ /1910, 45 = 0.9939¢ 7710999,
and As = 0.9702¢7°°?%, The agreement with the exact ones
(A, = eI16336 4, = 71197 and A3 = 1) is within the
discretization and numerical integration error.

As a second example, we will consider the case when two signal
components intersect, i.c., when it is not possible to satisfy the
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criterion for cross terms elimination for an instant . The signal is
taken in the form

2(t) = ej?():rtz + o~ J18 sin (2w(t+1))+aﬂc(5+4t)]_ 30)
The spectrogram, the pseudo Wigner distribution, the modified
pseudo Wigner distribution (calculated using (24)), and the modified
pseudo L-Wigner distribution (calculated using (25)) are given in
Fig. 4(a)~«(d), respectively. It is evident that the proposed method
is efficient in cross-term removal anywhere in the time-frequency
plane, except around the point of intersection, where they exist. That
is exactly what we expected from the theoretical analysis presented
in Section IIL. :

VI. CONCLUSION

The energy concentration in the time-frequency plane using time-
frequency distributions is analyzed. It is shown that if the instanta-
neous frequency is linear, only the Wigner distribution out of the
Cohen class produces the ideal concentration. For the analysis of
signals with nonlinear frequency, the L-Wigner distribution is used.
A computationally efficient method for its implementation, without
cross terms, is given.

APPENDIX A
ANALYSIS OF THE ALIASING EFFECTS

The analysis of aliasing effects is very interesting in the Wigner
distribution because of its quadratic nature [11], [12]. In order to
avoid aliasing, a signal has to be oversampled by a factor of 2 with
respect to the sampling interval defined in the sampling theorem, or
its analytic part has to be used. Here, we will show that the aliasing
components appearing in the Wigner distribution may be eliminated
in the same way as the cross terms.

Consider the discrete signal z4(t), which is formed by sampling
a continuous signal x(t).

za(t)= Y Ta(kT)8(t - kT)

k=—oc0

(A1)

where T represents the sampling interval. The Fourier transform of
x4(t) is a periodic function along the frequency axis with the period
wp = 2w /T [5]

Xa(w)= Y X(w+kwp).

k=—o0

(A2)

From (A2), we may conclude that z4(t) may be formally treated
as a continuous multicomponent signal having an infinite number of
components. The STFT for the sampled signal (4) is of the form
STFTa(w.nT) =r(t)e’® Y
’ k=—occ

. VV(UJ + kwp - ¢,(t)]|t=nT (A3)

where we have neglected the distortions due to higher-order partial
derivatives of the phase function. )

" Combining the previous relation with (17), the WD of discretized
signal is obtained in the form

WDd(w,nT)zi Z z Ir(t)?

kij=—occ kp=—co

- / Ww+ 0 + kiwp — &' ()]

W w = 0+ kawy — ¢ (D] dBlinr.  (A)
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Using similar procedure as in the cross-term analysis, it may be seen
that the integrand in (A4) is nonzero if the following holds:

—Wp/2 = (k1 — k2)wp/2

<0<VVB/2—(k1—k2)UJp/2. (AS)

The auto terms (k; = ko) appear as a consequence of integration
around the origin in the 6 coordinate system. The closest aliasing
components along ¢ axis are those for k1 — k2 = +1. Obviously,
they may be eliminated using a2 window P(#), which is equal to zero
along the 6 axis for the values of 9 outside the interval |6] < w;/2—
Wg/2. Observe that this condition is usually significantly relaxed,
as compared to the condition for eliminating cross terms (21). Thus,
removal of cross terms by the modified Wigner distribution usually
guarantees the elimination of the aliasing components. Therefore,
the sampling in the MPWD may be done according to the sampling
theorem. The same conclusions are valid for the MPLWD calculated
from the MPWD.
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