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A Multitime Definition of the Wigner Higher
Order Distribution: L-Wigner Distribution

LJubiga Stankovié

Abstract— A dual form of the Wigner higher order spectra
is introduced. Its analysis in the case of multicomponent signals
is performed. An efficient distribution for time-frequency signal
analysis (L-Wigner distribution) is derived from that analysis.
The theory is illustrated on a numerical example.

I. INTRODUCTION

IGHER order spectral analysis has been intensively

studied during last few years. Higher order statistics
known as cumulants and their Fourier transforms (FT), which
are known as higher order spectra, are often considered, but
we refer here only to the review paper [1] and the references
therein. Recently, higher order time-varying spectra have been
defined and analyzed [2]. The basic representation in the
time-varying higher order spectral analysis is the Wigner
higher order spectra. Its definition, of order k, of a complex
deterministic signal z(t) is [2]
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The Wigner higher order spectra, expressed in terms of the
FT X(w) of signal z(t), is [2]
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We will introduce and analyze a distribution dual to (1) and
(2). It will be referred to as the multitime Wigner higher order
distribution (MTWHOD); it is defined by
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and 1 < L < k. Equation (3) is dual to (1) when L = 1. The
MTWHOD in terms of z(¢) dual to (2) is
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All properties of the MTWHOD are just dual to the ones
described in [2] and [3] for the Wigner higher order spectra.
Our intention is to analyze the MTWHOD in the case of
multicomponent signals. This analysis will serve as a basis
for the derivation of a distribution with interesting properties.

II. AUTOTERMS AND CROSSTERMS IN THE MTWHOD

Consider a multicomponent signal formed as a sum of short
duration (pulse) signals

M
e(t) = Y Tm(t - dm), )
m=1

where T, (t) (m = 1,2,..., M) are such that z,,(t) = 0 for
[t| > €, with € being small as compared with the considered
time interval.

The integrand in (4) is different from zero only if the
following inequalities are satisfied:
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where 4, jm,ln = 1,2,...,.M; m = 1,2,...,.L —1; n =
L, L+1,...  k

In order to analyze the autoterms, consider the case M =
1 with d; = d, when the crossterms do not exist. Eliminating
ty(g = 1,...,k) from the first inequality in (6) and T from
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the remaining ones, we get
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where 7 = k/(k + 1) and m, n are indexes as in (6).

From the first inequality in (7), we see that the location of
the autoterms along 7 depends on the signal’s position d for
any L except for L = (k+1)/2. This case was preferred in [1]
in cumulant analysis. When L = (k + 1)/2, the autoterms are
located at the T axis origin and its vicinity. From the remaining
inequalities in (7), one may conclude that for L = (k + 1)/2
the autoterms lie, in the k-dimensional t;,%s,...,%; space,
along line s defined by

sity=—tta=—t,..., i1 = -4t =t i

=t,...,ty =t at the points t = d. (8)

The illustration of MTWHOD of the second order ((4) with
k = 2 dual to the Wigner bispectrum) that cannot satisfy
the condition L = (k + 1)/2, as well as the illustration of
MTWHOD of the third order ((4) with £ = 3 dual to the
Wigner trispectrum), as the lowest one satisfying the previous
condition (if one does not count the well-known Wigner
distribution), are given in Figs. 1(a), and (b), respectively.

If M > 1, then for L = (k + 1)/2, considering only line s,
the regions where the integrand in (4) is different from zero
may be obtained from (6) with j,, = I, = j:
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It follows from (9) that the components of the integrand in (4),
corresponding to the crossterms, are dislocated from the 7 axis
origin. They lie around 7 = d; — d;,4,5 = 1,2,..., M and
1 # j. From (9), one may conclude that the integration over
autoterms (Z = j) is completely performed, and at the same
time, the crossterms on s are removed if we use the window

wr (t) in (4) of width 2T, (wr(7) = 0 for |7| > Trn):
(k+1)e < Ty < min|d; — dj| — (k+1)e.  (10)
3

III. L-WIGNER DISTRIBUTION

The MTWHOD, which is given by (4), with L = (k+1)/2
along line s (defined by (8)) has the form

LWD[ (w,t) = /x*L (t - %)wL (t + é)wz,(r)e_j‘"dr.
. (11

This distribution will be called the L-Wigner distribution. For
L =1, it is reduced to the Wigner distribution.!

!'We have initially defined the L-Wigner distribution in an intuitive way,
analyzing the instantaneous frequency representation of monocomponent
signals by the common time-frequency distributions in [5]. The distributions
described in [6] and (7], resulting from the analysis of Wigner trispectrum,
may be treated as the special cases of the L-Wigner distribution with L = 2
as well.
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Fig. 1. Illustration of the MTWHOD of (a) second order and (b) third order.

Consider now multicomponent signal, which is formed as a
sum of long duration signals:

M
z(t) = Y rm(t)e??m® (12)

m=1

where the amplitudes 7,,(t) are slow varying, ie., such
that 7,,(t) may be treated as a constant inside the window
w(T);rm(t £ T)w(T) = o (B)w(r).

The L-Wigner distribution of signal (12) is
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where CT(w,t) denotes the crossterms along the frequency
axis. Although the total number of crossterms in the L-Wigner
distribution was drastically reduced when compared with the
MTWHOD (see (4)), it still remains very large.? Our aim is not
the analytical treatment of crossterms but the definition of a
distribution for time-frequency analysis that will be, under cer-
tain conditions, crossterm free. On the basis of the crossterm

2The total number of terms (autoterms plus crossterms) in (4) is N =
M*+1 for k > 1and N = M(M + 1)/2 for k = 1. The maximal number
of terms in the L-Wigner distribution may be obtained from the recursive
formula Ny = Np—1(Np—1 + 1)/2. The starting value is N, = M, and
the final one is N = N,, for L = 2™ 1. This form of L is used in the
realization; see Section IV. For example, taking M = 4 and k = 3(L = 2),
we get, for MTWHOD, N = 256, whereas for the L-Wigner distribution,
N = 55.
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locations, we have shown in Section II that these may be
eliminated in the case of nontime-overlapping pulses. In the
section that follows, we will show that crossterm elimination is
possible in the case of nonfrequency-overlapping long signals
(tones) as well.

Expanding ¢.,(t £+ 7/2L) into a Taylor series around ¢ up
to the third order term, we get

M
LWD(w,t) = 5= 3 r2H(0)6(w ~ d(D)e
m=1
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where ® denotes the frequency domain convolution 0 <
I71l, 72| < |3 ], and FT{O} is the FT operator.

From (14), one may conclude that the generalized power
T (t) is concentrated at the instantaneous frequencies ¢/, (t).
The distortions caused by the shape of the phase function
are due to the existence of its third and higher order deriva-
tives. If the instantaneous frequency is a linear function of
time, then the Wigner distribution (L = 1) produces the
ideal concentration. However, if that is not the case, then
L > 1 dramatically reduces the distortion. In other words,
the L-Wigner distribution locally linearizes the instantaneous
frequency function (some interesting results dealing with the
polynomial phase function are reported in [8] and [9]).

(14)

IV. A METHOD FOR THE L-WIGNER
DISTRIBUTION REALIZATION

The realization of L-Wigner distribution may be efficiently
done using the recursive formula

LWD2p(w,t) = % /LWDL(w +6,t)LWD_(w — 6, t)d6.
’ (15)
Note that LWD3p (w, t) will be crossterm free provided that 1)
the starting transform is crossterm free, and 2) the recursions
do not introduce crossterms. We will show that these require-
ments may be met under certain conditions. Let us prove that
assumption 2) may hold. Suppose that LWD(w, t) in (15) is
crossterm free. Its autoterms are located around ¢/, (t),m =
1,2,..., M; see (14). The terms in LWD5y (w, ) are located
along the 6 axis at |6 ~ [$}(t) — ¢}(t)]/2| < Wy, where
2W,y, is the width of W, (w) in (14). If the integration in (15)
is performed using the frequency domain window P(#), then
the crossterms in LWD,  (w,t) may be suppressed, whereas
the integration over autocomponents (i = j) is completed.
This is possible, provided that the width 2W, of window
P(6) (P(6) = 0 for || > W) satisfies
War S W, <minlgl(0) - #(0)/2 - War.  (16)
The modified L-Wigner distribution is
MLWDyy (w,t) = % / P(8)
]

LWDy (w + 6, t)LWD (w — 6, t)d8.
7
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The distortion due to the higher order-phase derivatives in
(14) is neglected in this analysis.
The starting iteration (2L = 1) is

MWD(w, ) = % / P(6)STFT(w + 0, £)STFT* (w — 6, £)d#
]

(18)
where STFT(w, t) is the short-time Fourier transform defined
as STFT(w,t) = FT, {z(t + 7)w(r)}.

This way, the resulting modified L-Wigner distribution is
crossterms free (terms denoted by CT(w,t) in (13) do not
exist) if the starting transform STFT(w,t) is crossterm free
(which is the case if the signal components do not overlap
in the time-frequency plane) and if, at the same time, (16) is
satisfied in each iteration. Note that if (16) cannot be satisfied
for some 4,5, and t (i.e., |¢}(t) — ¢9(t)|/2 — Wyt < Wy,
then the crossterms will appear at that instant ¢ between the
ith and jth signal components.

The discrete forms of (17) and (18), with a rectangular
window P(6), are

MWD(n,k)=|STFT(n,k)?
+2 % Re{STFT(nk+i)STFT*(n,k—i)}

MLWD, (n,k) =ML\;V=[1)%(n,k)
+2 %MLWDL(n,k+i)MLWDL(n,k—i)}

i=1

19)

where 2N, + 1 is the width of the discrete form of P(6).
In [4], it is shown that the realization of MWD(n, k) may be
computationally very efficient. Here, we will only indicate that
the oversampling in the modified Winger distribution (18) is
not necessary because the aliasing components are removed
in the same way as the crossterms are® [4], [10]. The same
conclusions are valid for the L-Wigner distribution.

V. NUMERICAL EXAMPLE

As a numerical example, consider the multicomponent sig-
nal

o(t) = 8j81r(2—t)2 + 312 sin[37 /2(t+1)] - j20m¢

+ 26—[25(t+0‘4)]2+j41rt
+ 9¢—[25(t—0.3)) — j40r¢ +n(b).

The first two components are of form (12), whereas the second
two are of form (5). The last component n(t) is a Gaussian
white noise with the variance o, = 0.3. The spectrogram
of z(t) is given in Fig. 2(a). In the STFT calculation, a
window w(r) = h%(r) (where h(7) is a Hanning window)
of the width 27,, = 1 is used (the window selection in
the STFT is very widely studied). The number of samples

3 A sampled signal has a periodic spectrum. It may be formally treated as a
multicomponent signal with an infinite number of components equally spaced
with the distance w, = 27 /At, where At is the sampling interval. Note that
the distance wp, which is considered from the point of view of (16), is usually

less demanding than the minimal distance between the autocomponents in the
original multicomponent signal.



STANKOVIC: MULTITIME DEFINITION OF THE WIGNER DISTRIBUTION

-1

Frequency
©

1 = = ]
e 6 Y -
0 5 ~ o
-1 T
—40x 0 40n
®)
1 \
T .
i 0
m -
¥ ™~
-1
—40x% 0 40n
Frequency
(Y]

Fig. 2. Time-frequency representation of a multicomponent signal: (a) Spectrogram, (b) Wigner distribution; (c) modified Wigner distribution, (d) modified
L-Wigner distribution with L = 4. Sampling interval At = 1/64, rectangular window P(6), and Hanning squared window w(r) are used.

is N = 64. Note that the number of nonzero samples in
the Fourier transform of w(r) is N = 2N, + 1 = 5, with
Ny, = 2 and W,, = 4x. The Wigner distribution, which is
calculated by the standard routines [4], is shown in Fig. 2(b).
The modified Wigner distribution, which was obtained from
the STFT and (19), is presented in Fig. 2(c). A rectangular
window P(6), whose width in the discrete domain is defined
by N, = 3, is used in (19). In order to ensure the integration
over autocomponents (W,,;, < W, in (16)), a very narrow
window P(6) is usually sufficient. In our example, with the
described window w(7), N, = N, = 2 is sufficient, but
we will take a margin with N, = 3 because the distortion
due to the higher order phase derivatives is not included
in (16). The value N, = 3 ie, W, = 6r in the analog
domain, provides the complete elimination of crossterms (as
well as the aliasing effects) between the components whose
instantaneous frequencies are more than 207 apart along the
frequency axis. This holds for all considered components in
the example (otherwise, the crossterms would appear but still
in a very reduced form). The MTWHOD along line s, i.e.,
the modified L-Wigner distribution with L = 4, calculated
with the same window P(f) and using (19) in two iterations
(L =2and L = 4) is given in Fig. 2(d). The analysis of the
crossterm elimination is the same as in case of the modified
Wigner distribution.

VI. CONCLUSION

An efficient distribution (L-Wigner distribution) for time-
frequency analysis is derived from the dual definition of the

Wigner higher order spectra. This distribution has the follow-
ing advantages over the standard Wigner distribution: There
is a very high distribution concentration at the instantaneous
frequency, crossterms are removed (or reduced), and signal
oversampling is not necessary
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