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alternately from the above expression) that y(n) is third-order ergodic
iff S, = S». This is a slight generalization of the result given in
[1]. Moreover, by making use of Assumption 2, a straightforward
computation shows that the variance of the estimate is given by
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from which we get the limiting variance as
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From (15) and (16), we can infer the following. The limiting variance
given by (16) is the “nonergodic part” of the variance of the finite
sample estimate C’ ,E,l“\')(r. p). This limiting variance comprises the
first two terms in (15). It does not vary with N and vanishes iff.
Sy = So. i.e., iff y(n) is third-order ergodic. The other two terms in
(15) vary as 1/ and thus do not contribute to the limiting variance.
They comprise the “ergodic part” of the variance. As mentioned
in [11, in case y(rn) is not third-order ergodic, an averaging over
independent realizations (records) in addition to time averaging is
required to obtain consistent estimates of Cy(7.p). In other words,
we deal with the estimates C' (y"‘ M p). The nonergodic part of the
variance then decreases as 1/ while the ergodic part as 1/K N2
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A Method for Time-Frequency Analysis

Ljubisa Stankovi¢

Abstract—A method for time-frequency signal analysis is presented. The
proposed method belongs to the general class of smoothed pseudo Wigner
distributions. It is derived from the analysis of the Wigner distribution
defined in the frequency domain. This method provides some substantial
advantages over the Wigner distribution. The well-known cross term
effects are reduced or completely removed. The oversampling of signal
is not necessary. In addition, the computation time can be significantly
shorter. The results are demonstrated on two numerical examples with
frequency modulated signals.

1. INTRODUCTION

Time-frequency analysis of signals and systems is an intensively
studied area, especially in the last decade. Many papers concerning
the theory and application of this analysis have been published.
Here, we will mention three excellent review papers [1}-[3]. The
oldest technique for time-frequency analysis is the spectrogram via
short time Fourier transform. Recently, the most popular techniques
are based on the Wigner distribution (WD) or its variation—the
generalized Wigner distribution [4]. Some of the important topics
from this literature, which will be addressed in this paper, include
the following:

1) efficient algorithms for the WD calculation or implementation
(518}

2) aliasing problems [9], [10]

3) suppressing cross terms [3].

The third problem was very effectively resolved by the
Choi-Williams method [11] with perservation of marginal properties,
but in a computationally very intensive way.

In this note, a computationally efficient method for approximative
time-frequency analysis, without need for oversampling, with cross
term reduction (or removal), is proposed. It is based on the WD
definition in the frequency domain and its relation to the spectrogram.

The method is illustrated by two numerical examples: one with
two linear frequency modulated signals and the other with linear and
sinusoidal frequecy modulated signals.
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II. THEORY

A. Analog Signals

The oldest method for time-frequency analysis is the short time
Fourier transform (STFT). This transform is also called the running
Fourier transform [12]. Let us consider a long signal f(t) or its
samples f(n) (Fig. 1).

The spectral components around time ¢ can be obtained using the
STFT in the form of a spectrogram:

where w(7) is a window, whose width is 7. This method is very
dependent on the window shape.
In the last decade, commonly used methods for time-frequency

analysis are based on the WD and its variations. The definition of the
WD or the pseudo WD (as it is used for long signals) is

W(t.w) = /_x “’(%)’”*('%)
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The relation between W(t,w) and F(t.w) is
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where > denotes a convolution in frequency.
If we introduce a narrow window P(6) we get
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Although this formula may be understood as a modification of the
smoothed pseudo WD, it shows very interesting effects and leads to
a computationally very efficient method. As it will be shown, this
method is qualitatively and numerically quite different than the WD
smoothing in time domain, using time-finite windows [3], [13].

We will first consider some useful effects which can be gained by
an appropriate choice of the window P(). Two special cases are:

1) If P(#) = 2w6(0), then the spectrogram, i.e., SPW (f..) =

S(t,w). is obtained.

2) If P(8) = 1, for all 4. then the pseudo WD is obtained.

These two special cases suggest the idea of a transform which will
be “between” a spectrogram and the WD and which will combine
the good properties of both. It is known that the spectrogram does
not suffer from cross terms between signals separated in the time-
frequency plane. The presence of the cross terms is an annoying trait
of the WD. The spectrogram has a significant leakage due to window
usage, which is much less exhibited in the case of the WD [14]. For

) P(26)

—w, -~ ®, ®; 6 ’ 0
F -0 ., [SPW0,0)
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Fig. 2. Cross terms reduction (removal) by windowing.

a spectrogram the sampling interval has to be taken by the sampling
theorem, while for the WD a signal has to be oversampled by factor 2.
Windowing the product in convolution (4) through narrow window
P(#). the cross terms will be reduced or even completely removed.
This is easy to see from Fig. 2, where it is supposed that, at the instant
t. the signal has the instantaneous frequencies . and +wq. The
convolution is, after windowing through P(6). free of cross terms,
which are present if P(6) is wide (i.e., when the WD is used).

On the other hand, if the time window w(7) is such that the
components of STFT are not far from the instantaneous frequencies,
the convergence inside P(#) is fast. The obtained distribution has the
quality of representation almost as the WD, but without cross terms.

In some cases, cross terms will be completely removed. If we have
a sum of frequency modulated signals then the cross terms will appear
(at the moment t) only if the distance between the instantaneous
frequencies is less than the window P(26) width extended by the auto
term width. By choosing an appropriate window P(6). the sharpness
of the WD can be preserved and the cross terms will be avoided. The
cross terms will appear only between two very close instantaneous
frequencies and will not disturb any other part of time-frequency
distribution. An analytical treatment of the above effects may be
found in [15].

B. Discrete Signals
The discrete form of the spectrogram is
DS(n.k)=|F(n. k‘)\2
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The meaning of f, () and 1\ in (5) is obvious.
The discrete WD in the time domain is
AY
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where the discrete signal and window in (6) are sampled with half
of the sampling interval assumed in (5).
The discretization of the SPW (4) produces

L
DSPW (n.k) = Z PA(OYFn. k+DF (nk=1 (D

i=—L
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where 2L + 1 is the width of discrete window Pd(i). We see that if
Pd(i) = 6(i) then DSPW (n, k) = DS (n. k). Noting that

Fin,k+)F (n,k—i)+ F(n.k —)F (n,k +1)
= 2Real {F(n.k+i)F (n.k—1)} ®)

and assuming Pd(i) is a rectangular window, we have

L
DSPW (n, k) = |F(n.k)> +2)_ Real
=1

AF(n.k+)F (nk— i)} ®

For the WD calculation, the sampling interval has to be less than one
half of the sampling interval specified by the sampling theorem. In the
frequency domain, this means that the calculation of the convolution
can be performed using the FFT after an appropriate zero padding. For
the DSPW zero padding in the frequency domain (i.e., oversampling
in time domain) is not necessary, because the aliasing components
will be removed in the same way as the cross terms, Fig. 2. If we
assume that F(n, k) = F(n, k + N), the aliasing may occur only in
the marginal intervals whose width is equal to the width of Pd(i).
But, this is not a necessary assumption, because (9) allows a direct
calculation. The terms containing the values of F(n,k % i) outside
the basic period, can simply be omitted. The worst case, the last
marginal values of the DSPW, will be always equal to the values of
the spectrogram at these points.

The alternative, commonly used, way to avoid oversampling for
the WD is in using the analytic signal.

To calculate the DSPW distribution we need to calculate the Fourier
transform at the time instant n. This can be done by a recursive
formula, from the previous values of the Fourier Transform at the
time instant n — 1, [12]:

F(n+1.k) = [fa(N) = fa(0) + F(n, k)] exp (j 2\’fk>. (10)

The initial Fourier Transform calculation has to be performed
using the FFT routine. All the subsequent calculations can be done
according to (10).!

Equation (10) gives the Fourier coefficients when the rectangular
window w(n) is applied. If we use, for example, the raised cosine
window, then the coefficients should be modified by:

Fr(n.k) = }{F(n.k)+ }{F(n.k =)+ F(n.k+ D]} (1D

C. Calculation Complexity

In this subsection, we will compare the proposed method (9)—(11)
with the standard WD, regarding the number of required arithmetric
operations. We will suppose that inside the window w(7) there are
N samples. To avoid aliasing in the WD calculation we have to use
the analytic signal or to oversample the signal, i.e., to take M =2N
samples inside the same window.

For correct analysis it should be noticed that the product fn+
m)f*(n — m) is Hermitian symmetric, so only M /2 = N multipli-
cation are needed. Also, the WD is real, so by one FFT routine, two
WD can be calculated at the same time.

The multiplications by —1, 0 or by a power of two are not
considered neither in the WD nor in the DPSW, because the time

1The recursive formulae are sensitive to the quantization error. The variance
of quantization error introduced in one iteration is, in this case, N times less
than the variance of quantization error introduced by the standard FFT routine.
It means that we can allow as many as N iterations to keep the accumulated
error less than the error introduced by the FFT. After each, say .V iterations,
the Fourier transform can be regenerated by the direct FFT calculation. The
time needed for one FFT calculation per N iterations is negligible in the
numerical calculation comparison.
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TABLE 1
THE NUMBERS OF COMPLEX ADDITIONS AND COMPLEX MULTIPLICATIONS
FOR DIFFERENT METHODS. THE REAL AND MIXED OPERATIONS ARE
EQUIVALENTED BY THE APPROPRIATE NUMBER OF COMPLEX ONES.

Wigner Distribution | Wigner Distrit DSPW with raised
with o pling | of analytic signal cosine window
Complex N N N
multiplications 7(4 +log, N) 7(3 +5log, N) ?(3 +1)
Complex SN N
additions Nlog,2N —2—10g2 N 7(6+ L)
TABLE 11

THE NUMBER OF COMPLEX ADDITIONS AND MULTIPLICATIONS FOR DIFFERENT
N. I—WIGNER DISTRIBUTION WITH OVERSAMPLING; II—WIGNER
DISTRIBUTION OF ANALYTIC SIGNAL ; III—SPECTROGRAM (DSPW WITH L =0y,
IV—DSPW witi L = 1; V—DSPW witH L = 2: VI—DSPW WITH L=3

N I Jij J77] v 4 |71
64 | Additions 3200 528 96| 128 160] 192
Multiplicat. 48| 960 192 224 256| 288
128 | Additions 704| 1216| 192| 256| 320 384
Multiplicat. 1024| 2240 384| 448| 512 576
256 | Additions 1536| 2752| 384 512 640 768
Multiplicat. | 2304| 5120 768 896| 1024| 1152
512 | Additions 3328| 6144| 768| 1024| 1280| 1536
Multiplicat. 5120| 11520\ 1536| 1792) 2048| 2304
1024 | Additions 7168 | 135681 1536| 2048 2560\ 3072
Multiplicat. | 11264 | 25600| 3072] 3584| 4096 4608

needed for the accompanying digital implementations is much shorter
than the time needed for other operations.

The numbers of mathematical operations are given in Table I. The
specific values, for different number of samples, are given in Table
I1. The complex signals and the application of raised cosine window
are assumed. If a signal is real, the results are to be changed, but the
ratios remain of the same order.

1t is obvious that for short Pd(i) a significant saving in compu-
tational time may be achieved. It means that the calculation of the
DSPW can be more efficient than the calculation of the WD.

For the WD calculation the standard FFT routines, with
M/2 log, M complex multiplications and M log, M complex
additions, are used. The WD is calculated according to (6), using
the FFT routines. The analytic signal is calculated in the following
order: 1) Find the FFT; 2) equate to zero the values corresponding to
the negative frequencies and multiply by 2 the values corresponding
to the positive frequencies; and 3) find the inverse FFT.

III. NUMERICAL EXAMPLES

The theory is illustrated by two numerical examples. First, we have
a signal in the form of a real valued linear frequency modulated signal

f(t) = cos [a(t + b)*]. (12)

The spectrogram and the WD, as well as results obtained by the
proposed method, are given in Fig. 3(a)-~(c) respectively. In Fig. 3(d)
the WD of an analytic signal is presented.

The second example was taken with a signal in the form of a sum
of linear and sinusoidal frequency modulated components:

F(t) = Aexp[—ja(t—b)’+exp {j{ccos [dn(t+e)]—gnt}}. (13)

The improvement of the time-frequency signal presentation, using
the proposed method, may be observed in Fig. 4.

For the selected number of samples (¥ = 64 for DSPW and
9N = 128 for WD) and the window Pd(i) width L = 3, results
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()]

Fig. 3. Time-frequency presentation of real linear frequency modulated signal. (a) Spectrogram. (b) pseudo Wigner distribution. (c)
proposed method. (d) Wigner distribution of an analytic signal. Sampling interval At = 1/32 (for the WD At/2): raised cosine
window w(7) whose width is T = 2; window Pd(i) is rectangular with L = 3: a = 4m:b = 2.

Fig. 4. Time-frequency presentation of linear and sinusoidal frequency
modulated signals: a) Spectrogram; b) pseudo Wigner distribution; c) proposed
method. Sampling interval At = 1/32 (for WD the At/2): raised cosine
window w(7) whose width is T = 2: window Pd(i) is rectangular with
L=3A=15a=4mb=21c=6:d=121e=1:g = 15.

are obtained (in both cases) with the number of arithmetic operation
given in Table II. The computational savings are evident.

1V. CONCLUSION

A method for time frequency analysis, based on the smoothed
pseudo Wigner distribution and spectrogram, is proposed. This
method reduces (or completely removes) the cross term effects. In
addition, it is computationally very efficient. The theory is illustrated
by the numerical examples.
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A General Procedure for the Derivation of
Principal Domains of Higher-Order Spectra

Vinod Chandran and Steve Elgar

Abstract—A general procedure to determine the principal domain (i.e.,
nonredundant region of computation) of any higher-order spectrum is
presented, using the bispectrum as an example. The procedure is then
applied to derive the principal domain of the trispectrum of a real-valued,
stationary time series. These results are easily extended to compute the
principal domains of other higher-order spectra.

1. INTRODUCTION

The primary purpose of this study is to provide a general procedure
for deriving the principal domains (i.e., nonredundant regions) of
higher-order spectra and use it to derive the nonredundant region of
computation of the trispectrum. Higher-order spectra or polyspectra
were introduced for studying nonlinearities and deviations from
Gaussianity in stationary random processes. They are defined as
the Fourier transforms of higher-order moments or cumulants of a
random process. The idea of a spectral representation for higher-
order moments of a time series appears in [1], and was further
developed in [2). A spectral representation for cumulants (attributed
to Kolmogorov) appears in [2]. Higher-order spectra are derived
from first principles in [3], [4]. For a single time series, the first
higher-order spectrum is the (auto) power spectrum. The 2nd and
3rd higher-order spectra are the (auto) bispectrum and the (auto)
trispectrum, and are defined as the Fourier transforms of the 3rd and
4th cumulants, respectively. Although cross higher-order spectra can
be defined for multiple time series, the present study is restricted to a
single time series and the prefix auto will be dropped. Further, it is not
necessary to define higher-order spectra in terms of cumulants here.
Instead, an alternative form involving products of Fourier coefficients
of realizations of a random process will be used. This form can be
derived from the cumulant based definition using Stieljes Integrals

[4].
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Let x[t] be a real-valued, stationary random process. The bi-
spectrum, B(f1. f2), of the process can be expressed as

B(f1. f2) = E[X(f1)X (f2)X(—=fi — f2)] (1)

where
x[t] = /e’h'“(lX(f)

is the Fourier decomposition of a realization of the process, *
denotes complex conjugation, j = v/—1. and E[] is the expectation
operator. This form of definition appears in {5] in an application
of the bispectrum which precedes the theoretical development of
cumulant spectra (3], {4]. Similarly, the trispectrum, T'( f1. f2, f3),
of the random process may be expressed as

T(fi.fou f3) = EX(FOX ()X ()X (-fi— o= f3)]l. (D

The bispectrum has been used in many applications including
the study of quadratic interactions, signal reconstruction, system
identification, and pattern recognition [7]. The trispectrum [4], [6],
[8]-[11] has not enjoyed the same popularity as the bispectrum,
partially because of the increased complexity in its computation
and interpretation. Dalle Molle and Hinich [10] discuss part of the
principal domain of the trispectrum. A procedure for the derivation of
the complete principal domain is described in Section 11, and applied
to the bispectrum in Section III.

1I. THE PROCEDURE

Let f denote the frequency normalized by the Nyquist frequency,
such that 0 < f < 1. If 2[t] is a real-valued time series, then
the Fourier transform, X (f). is conjugate symmetric, and hence
X~(f) = X(—F). The bispectrum, B(f1. f2), is then also given by

B(fi.f2) = EIX(fO)X(£)X"(fi + f2)]. 3

The trispectrum or any other higher-order spectrum can also be
expressed as the expected value of a product as in (3). The bispectrum
(or other higher-order spectrum) possesses redundancy in bifrequency
(or polyfrequency) space arising from
1) the interchangeability of any pair of frequencies in its definition
(1),
2) redundancy of the negative half of some of the frequency axes
owing to the conjugate symmetry property, and
3) periodicity of the Fourier transform at intervals of the sampling
frequency for discrete-time processes.

This redundancy can be systematically exploited and eliminated to
derive the principal domain or nonredundant region of computation
of the bispectrum (or other higher-order spectrum). Thus, B(f1,f2)
need only be computed for a subset (derived here to illustrate the
procedure) of all possible values of bifrequency (f1. f2).

Owing to property | the bispectrum is symmetric about the lines
fi=fofi=—-fi—falor2fi+ fo =0kfo=—fi = f2 (or
fi + 2f> = 0) as shown in Fig. 1. The kth order polyspectrum
will have k(k+1)/2 hyperplanes of symmetry in k-frequency space,
analogous to the lines of symmetry above. The bispectrum need be
computed only on one side of either of these lines, and therefore
only for the subset

S’ ={fi > 2} {fi +2f >0} S
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