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Fig. 8. Frequency response of FXLMS adaptive notch filter of Fig. 3 with
optimized second-order compensator of Table IV.

ilar to the single-channel response except for the factor F(w) that
multiplies the single-channel open loop response H(w). Standard
control theory can be applied to determine the effect of F(w) on the
closed loop response. For example, the amplitude and phase of
F(w) will perturb of H(w) on the Nyquist plot or Nichols chart,
producing known effects. For o = 0, F(w) = 1, and (22) reduces
exactly to the single-channel response, as expected. Also note that
ford = 0, F(w) = |1 + «|? is a constant and thus (22) is identical
to the single-channel closed loop response (2), except that the con-
stant factor |1 + o|® multiplies x. In the region of the notch at
w = Wy, it can be easily shown that

Jo — @] << |(1/a + e %) /3|
(24)

Flw) = |1 + ae_f“"5|2,

Thus, under this condition F(w) is nearly constant and again will
only have the effect of increasing the effective gain.

The single-stage, multichannel results can be easily generalized
to a multistage cascade by simply replacing all of the blocks in Fig.
4 with their matrix equivalents. Thus, C becomes the L X M can-
cellation path transfer function matrix C and each A, becomes a
multichannel version of the narrow-band FXLMS algorithm [6],
[7]. An application example for a two-channel, three-stage vibra-
tion control problem can be found in [8].
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Wigner Distribution of Noisy Signals

Ljubisa Stankovié and Srdjan Stankovi¢

Abstract—This correspondence presents an analysis of noise influ-
ence to the Wigner distribution. The mean and variance of Wigner
distribution of signals contaminated by additive noise are derived. It
is shown that in the case of white-noise, Wigner distribution, calculated
by definition, cannet be used for estimation. For estimation it is not
sufficient windowing in time domain, commonly used in signal pro-
cessing. The smoothing in time domain is necessary. Very simple
expressions for variance and bias estimation are obtained. The analytic
signal and noise are considered. In that case, only one window can
make variance finite. The results are demonstrated on numerical ex-
amples with linear and sinusoidal chirp pulses.

I. INTRODUCTION

The Wigner distribution was first introduced in the field of quan-
tum mechanics [1]. In signal processing it was used by Ville [2],
so that it is often called Wigner-Ville distribution. This distribu-
tion belongs to the class of time-frequency signal representations,
whose intensive research began last decade. The papers [3]-[5] had
a significant stimulus to that. Problems of discretization and alias-
ing, as well as algorithms for efficient calculation of this distribu-
tion, are analyzed and described in [6]-[12]. The applications of
Wigner distribution are various: analysis of nonstationary signals
[13], radar signals [14], biomedical signals [15], analysis and syn-
thesis of time varying filters [16], [17], and image processing [18],
[19].

The influence of noise to the Wigner distribution, and its modi-
fications, is analyzed in this correspondence. On the basis of this
analysis, a modification of a Wigner distribution that can be used
as an estimator with a finite variance is pointed out. That modifi-
cation, in the cases of noisy signals, will not only improve results,
as has been done in [18] for artifacts that appears in Wigner distri-
bution of signals without noise, but will play an essential role in
making the variance finite. For analytic signal and noise it is shown
that only the truncation window can be sufficient to make variance
finite. Examples with linear and sinusoidal frequency modulated
signals and Gaussian white noise (real and ‘‘analytic’’) are given
as illustrations.

II. THEORY

We shall consider a deterministic signal f(f) contaminated by
zero-mean real stationary noise n(r), given by expression

x@) = f@ + n@). D
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Boldfaced letters denote random variables. The Wigner distribu-
tion of signal x(z) is, by definition

W, (,0) = S_ X+ 7/x* ¢ — 1/De P dr. ()

Substituting x(f) by f(t) + n(t), we get
Wee(w, ) = Wi, ) + Won(w, ) + Wp(w, 1) + Wyplws 1).
(3)
The mean of Wigner distribution is
E{We(w, 0} = Wylw, ) + S;(w) @

because E{W,,(w, 0} = S,(w) and E{Wj,(w, )} = E{W,
(w, )} = 0. The Wigner distribution of noisy signals has the bias
equal to the noise power density function §, ().

The variance of random variable W, (w, ?) is

o = E{|Wilw, 1) — E{Wye(w, D}|*}. ®)

The mods of variance, which are not equal to zero, will be sepa-
rated in two parts: one depending on the signal and noise a},,, and
the other depending on the noise only a2,

= E{Wy(w, ) Whio, D} + E{Wy(w, 0 Wirw, 0}

+ E{Wy (@, 1) Wi, 0} + E{Wy(w, ) W, 9
LA (o) (-3
s(-Dl= (59
)
"R, <§L§>z YRR dt dt. - )

2

For the second part of variance 02y, we will first determine

E{|Wa (@, 0} = S_m S_m E{n(t + £/29n (¢t - £/2)

Cn@+ S/ Dn @ - /DY e D dt dp.
M

We see that in general fourth-order statistics is needed. In the case
when noise is Gaussian, we can reduce it to the two-order statistics
[20]

E{n(1,) n(ty) n(ts) n(t)}
= E{n(t)) n(ty)} E{n(t;) n(t)} + E{n(t)) n(tz)} E{n(ty) n(t,)}
+ E{n(t) n(ty)} E{n(t)) n(t;)} ®
s0, we get

03.,. = E{‘W,,,,(w, t)lz} - |E{Wrm(wa t)}|2

= S:ﬂ S:o [Rﬁ <%) + R? <£_;__£>} eI =D g d?.

®
Summing results

(10)

When the noise is white, the autocorrelation function is R, (7) =
028(7). The variance af,,, tends to infinite, and so does the variance
o2, = oo. The Wigner distribution of signals contaminated by this
kind of noise cannot be us_ed to estimate Wy(w, 7).

Let us now consider the influence of truncating window com-
monly used in signal processing

wf@ +n®] = w®f® + weyn®)
fu@® + n, Q). 1

After calculation similar to the previous ones, we get the mean
of Wigner distribution

x(?)

E{W.(w, 0} = W7, 0+ Sy (0, 0

= Wi (@, 15 Wi(w, ) + Sp(@)s Wi (@, ) (12)

with * denoting frequency domain convolution. The estimator is
biased.
The variances, in this case, are

dn= | R@nun{[s(i+5)r(+5)
oo (1=3)e(-3)]% (57)
(=g eed) osle2el-3)
"R, (?__ﬂ)} e 0 dg dt. |

2

The second part of variance is

0 2 (£, a5t E
oiwnw—g_& S_-mkw(s, &6 [R( 5 >+R,.( 5 )]

e 0 gg dt (13)

where .
RyE &N W =wh—E/DQwN + £/2)

cw(p = §/Dwln + §/2)

If the noise is white, the variance af,w,,w, also, tends to infinite. '
The estimation is not possible after smoothing in frequency do-
main, what is the case for Fourier transform of noisy signals [20].
Because of that we have to make smoothing with respect to the ¢
axes and define the estimator of Wigner distribution in the form of
smoothed pseudo-Wigner distribution [13], [18]

(14)

Wixlw, ) = S S_ pt— Nx(\ + 7/2)

- x®(N —~ 7/2)e™ " dr dA. (15)
The bias is

b = W’}f(f, w) - E{Wix(wv t)}

= Wy, ). — [p OF Wi, 1.t @) + p@)] S (@) S Wi (0, t)}
(16)

The last mod does not depend on the signal. For white noise it can
be easily removed, so it will not be considered in approximative
analysis.
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The variance components are

Ohn = Sl §: S: 5: {p(: = Np( = WRGE LN )
[les)rr (e e f)no-e559)
SASHICH RIS
e (n=E)re (e v i) ()\—u+£2>
UGGl

e = 0 ge de dN dy

an

and

O = L S_m L Lp(z = Np = WRE &N W
. |:Rn<)\_l"+£;§‘>Rn<)‘~(“——'£;§->
S L]

e =9 gE de d\ dp.

(18)

If the noise is white, then the component o?_,,., having in mind

SN—p+ £ /DN —p— (T +£)/2) =0.56(N — wd (¢
+ £)/2), can be written as

oim.v=a‘;g S PHE = MR, 7, NN

- (1 + ey dX\ dr. (19)

We see that the variance is finite, time and frequency dependent,
and dependent on the windows w(7) and p (f) shape. The windows
“are to satisfy the general conditions. '

Further, smoothing can be done, by the two-dimensional win- -

dow p(z, w) [21]. This type of window gives smaller variance and
greater bias.

A. Approximative Analysis
If the window p(¢) is narrow enough comparing to the varying
of signal f(r) and window w(7), then the variance of Wigner dis-
tribution can be approximated by
r
+fle+ =
i’ < 2)

"}nnw = 20, S_w R, (7, 7, 1, 1) Uf<t - -;)

2 2

+ [fz <r - %) S i <t + %)}eﬂ”’} dr (20)
Thne = 0P (0) S R,(r, 7,1, )(1 + ™) dr. @n
Previous expressions can be majored by

0k, < 80 MIMP o2, < 205pOMY (22)

where M} is the square magnitude of the signal f(¢), T is the win-

' The general conditions that are to be satisfied by window functions
w(0) = lor [W(w)dw = 2m; P(w)|,=0 = lor [p()dt = 1.

dow w(7) width, and
2T
MP = S wi(t — /2wt + 7/2)dr = 2QT —1).  (23)
=27

In the signal processing of long signals, window w(7) is often
taken without shift. Thus-we obtain
2T
M® =E,= S w*(r/2) dr < 4T. (24)
—2r
In that case, we will take that w?(7/2) is the window that satisfies
general conditions.' If w?(7/2) is Hamming window, then E,: =

1.59T.
A rough estimation of variance can be done by

2, = 80iTlolp(0) + 4M7 1. (25)

The bias of Wigner estimator, for long signals, can be written in
the form

bWy~ || pouwiemse-n e/

CfEE = N — 1/2)e " dr d, (26)

We will assume that the window p (M), as well as the Fourier
transform F,,(0) of window w,(7) = w?(7/2), are narrow. After
expansion of f( — A + 7/2) f*(t — A — 7/2) into a Taylor series
about the point A = 0, and the Wy(w — 0, 1) about § = 0, neglect-
ing the mods higher than third order, and after some transforma-
tions we get

2

;)
—2b = M; m [Wﬂ(w, t)]

2 2

w a
+ M5 3 {W/f(w, 0+ M3 o= Wyle, t)]}
? ?
= ME"W W (o, 0l + M5 — 3 [Wy(w, D] (27a)
where M} = [w?F,(w) do = —w!(0) and M% = {t’p(1) dt =

—P" (0) are energy and amplitude moments of windows w?(7/2)
and p(f). If w(r/2) is Hamming window M5 = 0.467°/(4T?),
and if p (¢) is rectangular M5 = 1/(12p?(0)).

When the window w(7) is taken with shift, then

1 i 2
b = Wylw, D[l — w2 (O] — 2 M3 55 g, 0]

2 T oW, o

(27b)
where M3" = ]wZWWW(w, Hdo = —[w(i + 7/w( — 7/}
for7 = 0.

The ideal case with respect to the Wigner distribution blas is
when w(7) = 1 for all 7 and p (f) = &(¢). In that case we would not
have a bias due to smoothing (which really had not been done in
this case). The error due to the noise would be such that estimation
cannot be done (9). The variance is smaller by narrowing the
window w(7) and widening the window p(¢), i.e., by increasing
the smoothing in frequency and time domain, (25). This increasing
leads to the increasing of bias. The choice has to be made by com-
promise between the bias and variance increasing of Wigner dis-
tribution estimator. The expressions (25) and (27) prove our com-
ments on the windows shape. We see that variance is direct and
bias inversely proportional to the width T of window w(7), and to
the amplitude p (0) of window p (t).
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The mean-square estimation error is ¢ = o2 + b’. The optimal
width T of window w?(7/2) and the optimal amplitude p (0) of
window p(f), can be obtained from the condition that e is mini-
mum. From the complete analysis the optimal window shapes could
be derived. The minimum energy moment window w?(7/2) and
the minimum amplitude moment window p () minimize bias.

B. Analytic Signal

In the previous analysis, the real noise has been considered. To
avoid the need for oversampling of signal by factor 2 and cross
terms between positive and negative frequencies, the Wigner dis-
tribution is very often calculated by not using the original signal,
but its analytic version. In that case, the noise is also ‘‘analytic’’
n,(t) = n(t) + jA(). By A () is denoted the Hilbert transform of
noise n(f). The modifications in that case are as follows: the mean
and the autocorrelation of Hilbert transform 7 (f) are the same as
for original noise n (t). The autocorrelation of noise n, () is R,, (1)
= 2R, (1) + j2R,(7)*h(7), where h(7) = 1/(xr) is the Hilbert
transformer impulse response. Equation (8) for Gaussian noise
holds in this case, because its Hilbert transform is also Gaussian.
The expected value in the integral in (7) has the form
E{n,(t)n¥ () nf () n,(1)} = Ry (§)Re (=) + RL((E = /),
which gives, replacing R,(7) by R,,(7), an equation the same as
(9) and (13), but without mod R2, (¢ + {)/2).

For white noise, knowing that FT [R,, (7)] = S, (w) = 402U (w),
we get

dn= | | () e raa

o

= 32 dwlU(w) S dt
T

-

16 ®
= Fa‘,t S OWi (1, 0 — 0)d0  (28)
0

RaHa,:

where U(w) is a unite step function. We see that, when noise is
analytic, variance can be finite with truncation window only. The
variance is time and frequency dependent (for long signals, it is
frequency dependent only).

III. NuMERICAL RESULTS

As examples we take linear and sinusoidal frequency modulated
signals. '
f@©) = cos (at + bt /2), and f() = e/ (29)
We consider the signals as being long. The influence of zero
mean white Gaussian noise is taken into account. In the case of
sinusoidal frequency modulated signal, the noise is taken to be real.
For linear frequency modulated signal, the analytic version of sig-
nal and noise is taken. On the Fig. 1(a) and 2(a) the Wigner dis-
tribution of noisy signals with window w(7) only is given. The
Wigner distribution with both windows w(7) and p (¢) is given on
Fig. 1(b) and 2(b). The frequency dependence is remarkable on
Fig. 1. The increasing of variance for negative frequencies, al-’
though not expected from (28), is due to the effects of discretization
[22] used in computer simulation.

®)

Fig. 1. Wigner distribution of linear frequency modulated analytic signal
and Gaussian noise with Hamming window w(7); o2 = 0.5;.a = 200;
b = 200; |t| < 0.5; Ar = 1/256; N = 256; S/N = 3 dB: (a) with w(7)

only; and (b) with p(f) = 28.3 cos ®2(xt/0.04) for |t| < 0.02 (close to

rectangular).

(b)

Fig. 2. Wigner distribution of sinusoidal frequency modulated signal and
Gaussian noise with Hamming window w(7); o2 = 1; ¢ = 2m; d = 32;
|t| < 0.5; At = 1/256; N = 256; §/N = 0 dB; (a) with w(r) only; and
(b) with p(t, f) = 25.64 cos ®(xt/0.02) cos “*(xf /2.5) for |1| < 0.01
and |f| < 1.25.

IV. CoNCLUSION

The analysis of noise influence to the Wigner distribution is done.
It is shown that the Wigner distribution, calculated by standard
definition, cannot be used to estimate Wigner distribution of signal
without noise. In general, it is not sufficient to have commonly
used smoothing in the frequency domain. The additional smoothing
in time domain is necessary. If signal and noise are analytic then
truncation can be sufficient to make the variance finite. The very
simple expressions for variance and bias estimation are derived.
The general characteristics of windows are pointed out. The results
are demonstrated on the numerical examples.
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The Vector Split-Radix Algorithm for 2-D DHT
Ja-Ling Wu and Soo-Chang Pei

Abstract—In this correspondence, a decimation-in-frequency vector
split-radix algorithm is propesed to decompose an N * N 2-D DHT into
one (N/2) * (N/2) DHT and twelve (N/4) = (N/4) DHT’s. The pro-
posed algorithm possesses the in-place property and needs no matrix
transpose. Also, its computational structure is very regular and is sim-
pler than those of all existing nonseparable 2-D DHT’s.

I. INTRODUCTION

The one-dimensional (1-D) split-radix approach [1], [2] applies
a radix-2 decomposition to the even indexed samplés and a radix-4
decomposition to the odd indexed samples. Recently, Duhamel [3]
showed that split-radix fast Fourier transform (FFT) is the best
possible tradeoff between the arithmetic complexity and the struc-
tural regularity for length-2" FFT’s. In two-dimensional (2-D)
problems, the vector radix method is available [4]. In this method,
a 2-D discrete Fourier transform (DFT) is divided into successively
smaller 2-D DFT’s until, ultimately, only trivial 2-D DFT’s needed
to be evaluated. It has been proved that the vector radix method
needs 25% fewer complex multiplications than the conventional
row-column decomposition. Recently, the split-radix FFT algo-
rithm has been extended to two dimensions using decimation in
frequency (DIF) [5] and decimation in time [6]. Further, in [7],
the 2-D vector split-radix DIF FFT algorithm was derived using a
structural approach.

Although symmetries of the DFT of a real-valued sequence can
be exploited to reduce both the storage and the computational costs,
a transform that directly maps a real-valued sequence to a real-
valued spectrum while preserving most of the useful properties of
the DFT is sometimes preferred. One such transform is the discrete
Hartley transform [8]. Sorensen et al. [9] have developed a com-
plete set of fast Hartley transform (FHT) algorithms, including DIF
radix-2, radix-4, split-radix, prime factor, and Winograd-Hartley
transform algorithms. Although both [9] and [10] indicated the fact
that it is hopeless to find FHT algorithms requiring fewer arith-
metic operations than the corresponding FFT algorithms, the self-
inverse property of DHT makes it interesting in some applications,
such as spectral analysis [11]. Thus, many works have been de-
voted to the development of better and faster algorithms for 1-D
DHT [8]-[14]. The major concern for the extension of 1-D DHT
to 2-D is the separability of 2-D DHT [15]-[17]. Huang et al. [18}
have derived a vector split-radix algorithm for 2-D nonseparable
DHT in which an N * N 2-D DHT is decomposed into three (N/2)
* (N/2) DHT’s and four (N/4) * (N/4) DHT’s, as the one given
in [3] developed for computing 2-D DFT.

In this correspondence, a DIF vector split-radix algorithm is pro-
posed to decompose an N * N 2-D DHT into one (N/2) * (N/2)
DHT and twelve (N/4) = (N/4) DHT’s, as the one was done for
2-D DFT given in [7]. The proposed algorithm possesses the
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