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Boundary Condition Expansion of Basis
Functions Method Implemented by Fast
Fourier Transform Algorithms

LJUBISA STANKOVIC AND SVETOZAR JOVICEVIC

Abstract —This paper presents a new approach to boundary value prob-
lems. It is based on boundary condition expansion on basis functions. The
expansion coefficients are determined using the fast Fourier transform of
basis functions on the boundary. This approach is compared with the
least-squares boundary residual method (LSBRM). It is shown that this
approach results in a considerable reduction in computation time in
comparison with the original LSBRM. The procedure is successfully
demonstrated on diffraction and eigenvalue problems.

I. INTRODUCTION

ETHODS of modal expansion have frequently been
Mused in solving electromagnetic boundary value
problems. Among them the point matching method [1] is
one of the oldest and simplest mathematical methods of
determining expansion coefficients. It has been used in
solving eigenvalue problems [2], [3] and in the solution of
the problems of scattering from a periodic surface [4], [5].
The least-squares boundary residual method (LSBRM), an
improved point matching method, has been introduced in
scattering problems [6] and has also been successfully used
both in solving eigenvalue problems and dielectric wave-
guides [7], [8] and in acoustic wave propagation along
periodic gratings [9].

The applicability of the LSBRM method has been
demonstrated in electrostatic and eddy currents and also
in the treatment of nonharmonic field problems [10], [11].
The method has made possible a very effective analysis of
waveguides with complex cross sections [12]. In all of these
problems the least-squares boundary residual method has
been found to be very accurate and convenient. It is
therefore recommended not only in the specific area of
microwave techniques, but also as a reliable numerical
procedure of more general interest in the solution of
boundary value problems. Although the boundary condi-
tions can be satisfied on certain parts of the boundary
through an appropriate choice of basis functions, the nu-
merical integration of basis function products along the
rest of the boundary is a formidable procedure. Efforts in
reducing the computation time seem to be worthwhile. The
transformation of basis functions into rectanguler pulse
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functions [13] is a possible technique. This paper presents
an approach to solving boundary value problems using the
fast Fourier transforms (FFT) of basis functions along the
boundary, resulting in a reduction in computation time.

1I. THEORY

Let us consider a two-dimensional equation of the
Helmholtz type:
%u  9%u =0 )
—t ——+ ku=
axz gy
with boundary condition along the line L =L,U L, de-
fined by the function /(x). The boundary condition on L,
is of the Dirichlet type and on L, of the Neumann type:

u(x,1(x)) on L,
g(x) = au(xé,j(X)) N, 2)

A solution to (1) with boundary condition (2) will be
sought as a sum of basis functions ¢,(x, y) of (1):
M

u(x,y)= X ¢, @a(x,¥).

m=1

3)

Let us define the functions f,(x) as

q)m(x’l('x)) on L,
fu(x) = knawm(;,nl(X)) on L, (4)

taking k, as weighting factor for Neumann’s boundary
condition. If functions f, (x) can be developed in Fourier
series, then we can express them in the form
N/2-1

E Fm(y)ej(Zﬂ/a)ux
v=—N/2

fu(x) = (5)
where a denotes the length of periodicity along the x axis.
If the functions f, (x) are band-limited, we can obtain the
coefficients F,(v) from the samples of functions f,,(x) at
the points x = an /N using the FFT algorithms (sce [14]).
Therefore,

F,(v) =FFT{/,(n)) (6)
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where f,.(n) = f,(x).~(a,n). denotes the nth sample of
the mth basis function on the boundary.

It should be pointed out that in many electromagnetic
problems only one of the types of boundary conditions
given by (2) is prescribed along the boundary line. How-
ever, in the problems where one of the types of boundary
conditions is given on one part of the boundary line L and
the other type on the remaining part of the boundary,
functions f,,(x) and g(x) may have a discontinuity of the
first kind. But even this does not affect the possibility of
developing functions in Fourier series, although it does
affect the convergence. Such problems were analyzed in
[24].

The deviation from the boundary value is

e(x)= X

m=1

Cpfm(x,1(x)) = g(x). (™)

With F,(») denoting the FFT of the boundary condition:
F(v) =FFT {g(n))} (8)

and after interchanging the order of summation, the error
in any point can be written as

N/2—1 M .
e(x)= X > CnFr(v) = Fy(v) [e/@797% (9)

v=-N/2Lm=1

Now, if M =N then the unknown coefficients c,, can be
found by taking all amplitudes to be equal to zero, i.e.,
from the system

F(-M/2) FM(_M/z) 51
F(M/2-1) Fy(M/2-1)|| e
F(-M,2)
-l o
Fg(M/2—1)

Accepting that M = N, i.e, that the number of expan-
sion coefficients is equal to the number of basis function
samples, we actually come to a variant of the collocation
method. However, this procedure has an advantage over
the standard collocation procedure in that the values of
coefficients F, (») differ more from one another than the
values of the basis functions themselves. Therefore matrix
(10) is not ill-conditioned. Still, the size of system (10) acts
as a serious disadvantage, as is the case in the original
procedure of the collocation method. However, not all N
samples need to be taken, only the first M (M < N)
harmonics, i.e., the number of modes in (3), so that we
obtain a very much reduced system of order M.

In [15] we minimized the mean of the absolute square
value of the error (7), which, knowing that it was equal to
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the sum of the mean square values of all harmonics:

o N/2-1 M
()= X [ZcmFm(V)—Fg(V)]

yv=—-N/2Lm=1

[ L erEr ()= Fx(v)| (11)

m=1

gave a system with unknown expansion coefficients:

Ay Al @ B,
; S HERE
A Apgnl|]| m By
where 4,,, and B, denote
N/2-1
AmI: Z E(V)Fm*(v)
v=—N/2
N/2-1
B,= Y F(»)EX(). (13)
v=—N/2

In treating both procedures (10) and (12) as variants of
the general moment method (see [23]), a correspondence is
found. The requirements e(x) =0 can be written in the
form

M

Y ufulx) =), (14)
m=1

If we take, as a weighting function, the complex conju-
gate of only one basis function’s harmonic, ie.,
EX(v)exp(—2mxv/a), from (14) after dividing by F,*(»)
and integrating within the interval (0, @), we get system
(10).

On the other hand, if we take the complex conjugate of
the basis function along the boundary, i.e., f*(x), as a
weighting function, we obtain the following system:

M

L ulffit) = (8:4%),  1=1.2:+ M (19)

m=1
where ( f,,. f;*) is a scalar product along the interval (0, a).
System (15) is equivalent to the requirement |e(x)|*>= 0.
By introducing the FFT of functions f, (x), f,(x), and
g(x) into (15) and with the orthogonality of harmonics, we
obtain system (12).

Thus, we can conclude that system (12) is more general
since it includes the complete Fourier transform (FT) of
the weighting functions and that (10) is a special case. By
including only one harmonic and assuming the same order,
system (12) will produce greater accuracy than (10) but
with a greater computation time.

In order to achieve more accurate results the integration
interval in (15) should be divided into a greater number of
subintervals; ie., a greater number of function samples
and FFT harmonics should be taken. However, in sum
(13) it is possible to take only N, most significant modes.
In accordance with our previous discussion this means to
take as a weighting function the N, harmonics of the basis




298

(a)
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Fig. 1. The grating of (a) sinusoidal, (b) semicircular, and (c) inverse
profiles.

functions grouped around the most significant harmonic.
In that case the N, members of sum (13) are grouped
around the frequency on which the product E, (v)F*(»)
has the maximum value, which is explained in more detail
in [10]. In the examples treated in this paper the determi-
nation of these frequencies is simple. If we take N;=0,
then we get variant (10). It appears that the convergence
regarding N, is very fast, so taking just a few of the
nearest harmonics we obtain results almost identical with
the results obtained when we take all N computed har-
monics.
In [15] we found the ratio between the computation
times of the original LSBRM and procedure (12) to be
N, log,N
T=—+—u (16)
where M is the number of modes (i.e., expansion coeffi-
cients), N is the number of function samples (FFT har-
monics), and N, is the number of the most significant
modes of sum (13).
In system (10) the summation applied in (13) is excluded
(i.e., N,=0) so the time ratio is now
log, N
T,= ’i; . a7

1L

The applicability of this method using different numbers
of harmonics (i.e,, N;) will be demonstrated on electro-
magnetic wave diffraction from periodic gratings of perfect
conductivity. We shall consider the grating of the sinu-
soidal profile (Fig. 1(a)) which has very often been used as
a testing profile [6], [16], [17] and also of the semicircular
profile (Fig. 1(b) and (c)) used in [18].

As usual, we are assuming an incident plane wave of
normal polarization:

APPLICATION TO DIFFRACTION PROBLEMS

E, = Eje k(<=8 (18)
with
§=cosf

E,=1.

y=sinf

k=2m/\ (19)
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o
Fig. 2. The reflection coefficients in sinusoidal grating: h/A=0.5;
d/N=2.
TABLE 1
ENERGY BALANCE FOR SINUSOIDAL GRATING
diffraction from sinuspidal grating i
d/r=2.  h/x=0.5 M=15 i
. S —

Ni=31 Ne=3 N1=0 j
angle energy sum angle energy sum| angle energy sum _*
o 0.9999929 o 1.000010 ! o 0.9981373 \‘
10 0.9999952 10 1.000241 10 1.0007950 l
20 0.9999846 20 1.000772 20 0.9956011 i
30 0.9999901 30 1.000671 30 1.0000000 1
40 0.9999971 40 1.000107 ‘ 40 1.0003840 i
50 0.9999933 50 1.000088 50 1.0018050 l

60 0.9999891 60 1.000021 &0 1.0022290

70 0.9999902 70 1.000407 70 1.0003760
80 0.9999973 80 1.000104 80 0.9978624 \
a7 0.9999979 89 1.000029 89 1.0005470 i

The reflected field is represented as a sum of propagat-
ing and attenuated waves:

M
— —jk (VX +8,2)
E = Y E,e
m=—-M

(20)

with

8, =y1-v,.
The unknown 2 M +1 coefficients E,, are determined by

the previously described procedure satisfying the boundary
condition on the grating wall:

E =E,.

Y,,=sind + mA /d

(21)
Thus, we have
fm(x) — efjk(y,,,erSml(x))

—jk(yx+81(x))

glx)=-e (22)

Having found field amplitudes E,, we plotted the reflec-
tion coefficients against the incident angle:

(23)
For a sinusoidal grating the reflection coefficients are

shown in Fig. 2.
As an accuracy test energy conservation was employed:

(24)

8
R, =|E.l>=.
m |m| 8

b
YIE, 5 =1

The summation went over those values of m for which
8, was real. As can be seen from Table I the requirement
imposed by (23) was rigorously satisfied.



STANKOVIC AND JOVICEVIC: BOUNDARY CONDITION EXPANSION
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Fig. 3. The reflection coefficients in the case of semicircular grating:
h/A=05.d/A=2.
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Fig. 4. The reflection coefficients in the case of inverse grating (h /A =

05, d/A=2).

Here the error is less than 0.5 percent for N, =0 and
N=64. For N;=31 the error is even less than 0.002
percent. In the former, when N, = 0, the time ratio is 0.193
and for N, =31 it is 0.678. So, by using system (10) we
obtain the coefficients 5.18 times faster than by using the
original LSBRM method. As can be seen, if we take just
N; =3 then the value of error is very close to that in
N;=31. However, when N, =3, the computation is four
times faster than in the original LSBRM procedure.

The fulfillment of the boundary condition (eq. (21)) can
be used as another accuracy check. Although it is not
presented here, this check has been performed and it has
proved the high accuracy of the results.

We solved the diffraction problem of semicircular (Fig.
1(b)) and inverse (Fig. 1(c)) gratings in the same way.
Incident wave and boundary data are the same as in the
previous example. The reflection coefficients are shown in
Figs. 3 and 4.

The energy balance for a semicircular grating is given in
Table I1. The error is less than 2 percent for a semicircular
grating with N, =5 and even less than 0.3 percent with
N; = 31. This was achieved with M =15, that is, with the
31 modes in (20) and with 256 samples along the grating
wall, within the interval (0, 4). Taking N, = 0 we could not
get acceptable results for all angles of incidence, so they
are not given in Table II. The reason for this might be the
existence of sharp edges in this structure.

For N=1256, M =31, and N,=31 the time ratio of
performed calculations is 0.5, which means that the modi-
fied version of the LSBRM is approximately two times
faster than the original method. With N, =5, it is 3.5 times
faster.
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TABLE II
ENERGY BALANCE OF SEMICIRCULAR GRATING
diffraction from semicircular grating
d/x=2. h/x=0.5 M=15
Ni=5 N1=31
angle energy sum angle energy sum
o 1.0047280 [ 1.0021250
10 0.9908099 10 1.0006920
20 0.9837392 20 0.9970310
30 1.0181570 30 0.9975786
40 0.9955971 40 1.0004160
50 0.9827893 50 1.0007570
60 0.9863375 60 1.0020270
70 1.0016860 70 1.0028000
80 0.9929035 80 1.0022110
89 1.0012530 89 1.0005470
y y
RS 1)
c
b x -
\/ ” ]
Fig. 5. A cross section of elliptical and ridged elliptical waveguides.

As was expected, in each of these cases rather pro-
nounced Wood’s anomalies were found at an angle of
incidence of § =30°. The reason for this is that a double
grazing occurs (|y,,| =1), the grazing orders being —3 and _
+1. An especially strong coupling is among —2 and 0
orders and, since —2 is a backscattering wave, it suffers
the strongest resonant effect, as was explained in detail in
[19}.

IV. THE EIGENVALUE PROBLEMS

As an illustration of the applicability of the suggested
method in solving eigenvalue problems, we shall consider
ridged elliptical waveguides (Fig. 5) with H wave.

Elliptical waveguides are often taken as a reference
when comparing the numerical methods with analytical
results [20], [21]). Assuming that the volume is the same,
conventional elliptical waveguides, as is known [22], have a
lower attenuation factor than circular and rectangular ones.
We shall examine the characteristics of ridged elliptical
waveguides which, as will be shown, have a lower cutoff
frequency and a wider bandwidth but a greater attenuation
factor.

The differential equation for the longitudinal magnetic
field component U = H, is the same as (1), and the bound-
ary condition on the waveguide walls is

Gall g (25)
an
so system (12) becomes
Ay Aim|||l €
=0. (26)
Awn Al || €
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TABLE III
NORMALIZED EIGENVALUE k /(2/a) of H{; MODE OF ELLIPTICAL AND
RIDGED ELLIPTICAL WAVEGUIDES (¢ =1, b=0.6, M =11, N=64)

ELLIPTICAL RIDGED ELLIPTICAL
r=0.3 c=0.7 r=0.3 c=0.6
analytic . . B ™ . .
1.868 1.868 1.868 1.696 1.696 1.560 1.587
results obtained by: * - system (10) s - system (15)

1n(e®)

07§ . 1.696 ‘ 225 k/(2/a)

Fig. 6. The behavior of e against k /(2/a) for elliptical waveguide
where a =2 and b= 0.6.

We shall assume H, for the Hf, mode to be

2m—1)7nx
Z Cpm sm( e ) cosk,y

m=1

3+[(2m;1)w] =k2_

The superscript ¢ indicates the H;; mode odd with respect
to the longer ellipse axis.
The nontriviality condition for system (26) requires

¢
H*ll

27)

det|4,,,]| =0 (28)

where A, = A,,,(k). For different values of the relative
eigenvalue k, = k /(2/a) we shall calculate det ||4,,,|. The
unknown eigenvalues are those values for which the deter-
minant reaches the minimum. However, as in [15], we
achieved better results by taking ¢, =1, finding the integral
of the absolute square error e, and then coefficients ¢ from
(26). By changing the value of k,, we found the minimum
of e? and thus the eigenvalue we were seeking.

The eigenvalues for elliptical waveguides obtained by
systems (10) and (12) are compared with analytically ob-
tained eigenvalues in Table III. The behavior of the abso-
lute square error integral using system (10) can be seen
from Fig. 6.

For the ridged elliptical waveguides (Fig. 5) we also used
the H, approximation given by (27). Again, applying pro-
cedure (10) and procedure (12), we found the eigenvalues
for two sets of ridge parameters. The results are given in
the middle and right-hand columns of Table II. For a
relatively shallow ridge the results are identical, but for a
deeper ridge a slight difference appears.

It is interesting to see the distribution of error e(x)
around the boundary curve of the cross section. This is
shown in Fig. 7 for systems (10) and (12). They are close,
but the peak value of error produced by system (10) is
greater. It is also greater along most of the boundary line.

He i 2.985 . . .7

i . ~
W, 3.385 3.377 3.487 3.644

'
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Fig. 7. Error along boundary line where a=2, b=0.6, r =023, and

¢=0.7.

TABLE IV
NORMALIZED EIGENVALUE k/(2/a) of Hy,, H{, MODES OF THE
RIDGED ELLIPTICAL WAVEGUIDE (¢ =1, b= 0.6) FOR
Hj, (M =11, N =64); FOR H{, (M =21, N=128)

ELLIPTICAL
analytic r=0.3
[

2.978

RIDGED ELLIPTICAL
c=0.7 i r=0.3

3.314

€=0.6

3.204

Ll

« (1]

1-Analytic elliptic
2-Calcul. elliptic
3-Ridged

4-Semi elliptic
S5-Ridged semi elliptic

Fig. 8. Attenuation factor for Hf; mode of elliptical (semielliptical) and
ridged waveguide (with one and two ridges) with a =1, b= 0.6, c=0.6,
and r=03.

Therefore, using (10), we found eigenvalues for the HJ;
and HY, modes taking

2m—1)7w
HS,: 3= ): . cos( ) xsink,y
m=1
2m
Hfy: Z c,,COS xcoskyy (29)
m=1

Superscript s indicates the H;; mode even with respect to
the longer ellipse axis.

The results are given in Table IV. For the elliptical
waveguides they are again compared with analytical re-
sults. The number of modes and samples is given below
the table.

Having found the coefficients c,,, we can easily calculate
the attenuation factors from the formula

Rsf|H,|2dl -
a=—Ft—— Rg= el (30)
g

2 [\ Hy |2 ds
S

where all the other field components are derived from H,
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in the usual manner (H; is the transversal cross-sectional
component, H, is the tangential boundary line component).
They are given in Fig. 8, which also shows the analytically
obtained attenuation factor for the elliptical waveguide
(conductivity is taken to be ¢ =62.9 10° [S/m]). As we
can see the difference is small.

All calculations in this paper were carried out on a
VAX =11/780.

V. CONCLUSION

The original LSBRM was modified using FFT of the
basis and boundary condition functions along the bound-
ary. This approach led to numerical procedures that can be
treated as special cases of the general moment method
with FT of basis functions as weighting functions. Proce-
dures differ by the number of FT harmonics, which ranges
from complete FT to no more than one FT harmonic of
basis functions along the boundary. The first possibility is
equivalent to the requirement that the mean square abso-
lute error is minimum, while the second possibility actually
leads to an improved collocation procedure.

In several diffraction and eigenvalue problems treated in
this paper we found that, in order to obtain very accurate
results, it was sufficient to take just a few (three to five)
FT’s of the mainly contributing harmonics of the basis
functions. Consequently, this resulted in substantial saving
in computation time compared to the original LSBRM.
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