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Abstract: The paper offers a new approach to
boundary value problems. It is a variant of the
least squares boundary residual method
(LSBRM), combined with the fast Fourier trans-
form (FFT) of basis functions and boundary con-
ditions. This variant makes possible a
considerable saving of computation time in com-
parison with the original LSBRM. The procedure
was successfully demonstrated on diffraction and
eigenvalue problems.

1 Introduction

The least squares residual method for electromagnetic
problems in the microwave domain, e.g. scattering and
eigenvalue problems [1, 2] shows considerable advan-
tages over the other possible methods. It was also suc-
cessfully used in dielectric waveguides [3], and acoustic
wave propagation along periodic grating [4]. Its applica-
bility was demonstrated in electrostatic and eddy cur-
rents, and also for nonha-monic field problems [5, 6].
The method makes possible a very effective analysis of
waveguides with complex cross-sections [7]. The high
accuracy of the method and the simplicity of program-
ming make this method very attractive in a large number
of boundary value problems.

The only difficulty may be the choice of appropriate
basis functions; although this choice is almost always dic-
tated by the nature of the problem. In many cases it is
possible to choose the basis functions so that the bound-
ary conditions are fulfilled at least at some parts of the
boundary. However, the numerical integration of the pro-
ducts of the basis functions should be carried out along
the rest of the boundary. This is the most time consuming
part of the whole numerical procedure. Several attempts
to decrease the computation time have been made. One
of them is based on the transformation of basis functions
into rectangular pulse functions satisfying the boundary
conditions over only one part of the interface [8]. We
shall present a variant of LSBRM combined with the fast
Fourier transform of basis functions and boundary con-
ditions. resulting in a substantial saving of computation
time.
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2 Theory

Let us consider a two dimensional equation of the Helm-
holtz type:

*U U
ﬁ+a_),2+kzu=0 1)

with the boundary condition along the line L= L, + L,
defined by the function I(x). The boundary condition on
L, is of the Dirichlet type, and that on L, is of the
Neumann type:

Ulx, l(x)] on L,
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The solution will be sought as a sum of the basis func-
tions ¢,(x, y) of eqn. 1:

M

U, y) = m‘élam Gn(x, ) 3
If we define the functions f,(x, y) as
Gulx, Ux)] on L,
o) =180 ], )

and if they meet conditions to be developed in Fourier
series, then we can express them in a form
N/i2-1

Z I':"m(n)ejn(Zn/a)x (5)

n=—-N/2
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where a denotes the length of periodicity on the x-axis. If
the functions f,[x, (x)] are bandlimited, we can get the
coefficients F,(n) from samples of the functions f, [x, I(x)]
at x = a(i/N), using the FFT algorithm (see Reference 9
for example). So we can write

F,(n) = FFT{f (n)} (6)

where f,(n) = f,[x, {x)] |, N, denotes the nth sample of
the mth basis function on the boundary.
Deviation of the bounary condition is given by

M
e(x) = Z o fm[xs I(X)] - g(x) (7)
m=1
The FFT of the boundary condition function is denoted
by F(n):
F(n) = FFT[g(n)] ®)
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and after interchanging the order of summation, the error
at any point can be written as

N2-1 [ M
ex)= Y [ a F (1) — ﬁg(n):lejn(zu/a)x ©)

n=—N/2

The mean of the absolute square value of the error is
equal to the sum of the mean square values of all the
harmonics:
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We shall find the developing coefficients from the condi-
tion that the right-hand side of eqn. 10 should be a
minimum. This means that the first derivative of the real
part of a,, is zero, which gives

N2-1 M Ni2-1

Y YRe{uFmFim} = Y Re {FmFin)}
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By analogy, the derivative of the imaginary part of «,, is
N2-1 M
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Eqgns. 11 and 12 can be condensed to
M
ZoclA,,,,:B,,, m=12 ..M (13)
1=1

A,y and B,, denote

N2-1 Ni2-t o N
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Therefore the unknown developing coefficients are given
by the following system of linear equations:

Ay 0 A xy B,
: SIEREE (1)
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Note that the relationship A4,,, = 4}, holds for the coeffi-
cients A,,, which saves time in filling up the matrix in
eqn. 15. In the case of the boundary condition g(x) = 0,
the same approach can be applied, taking a; = —1, ie.
g(x) = fi[x, i(x)], and then finding the other coefficients.

3 Application in diffraction problems

The applicability of the method will be demonstrated on
electromagnetic wave diffraction, from periodic gratings
which have perfect conductivity. The grating of sinus-
oidal profile (Fig. 1a) has often been used as a test
problem for many methods (for extensive references see
[1o, 117.

As usual, we shall assume an incident plane wave of
normal polarisation:

E, = Ege <=9 (16)

where y =sin 6, 8 = cos 6, k = 2n/A and E, = 1.

The reflected field will be represented as a sum of pro-
pagating and attenuated waves:

E =

r

M _ .
Z Eme—_yk( X + Omz) (17)

m=—Mi
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with
Vw=sin 0 +mi/d 8, =/(1—72)

We shall determine the unknown coefficients E,, by the
procedure described previously, which satisfies the
boundary condition on the grating wall:

E, = —E (18)
Thus, here we have
fm[x’ I(X)] =e¢ — jk{ymx + dmh sin (2n/d)x)
g(x) _ _eAjk(yxfdh sin (2n/d)x) (19)

After finding the field amplitudes E,, we plotted the
reflection coefficients

R, =|E,|* 6—(;" (20)

against the incidental angle (Figs. 2a and b), for two sets
of grating parameters.

In the same way we solved the diffraction problem on
triangular cross-section grating (Fig. 1b), which is of
greater practical interest. The reflection coefficients are
shown on Fig. 3.

A simple and reliable test is the energy balance equa-
tion:

LA @)

where summation is over those m for which 4, is real.
From Table 1 it can be seen that the requirement of eqn.
21 is adequately satisfied.

The error is less than 1% for a triangular grating, and
even less than 0.06% for a sinusoidal grating. This was
achieved with M; = 15, i.e. with 31 modes in eqn. 17, and
with 64 samples along the grating wall, i.e. within the
interval (0, d).

For the sinusoidal grating, the same parameters have
been taken as in Reference [10], and the results are in
complete agreement.

The fulfilment of the boundary condition, eqn. 18, can
be used as another accuracy check. Although it is not
presented here, this check has been performed and it has
proved the high accuracy of this numerical procedure.

Generally, better accuracy, with less calculation, can
be achieved with the suggested modification than with
the original LSBRM. If N is the number of integral steps,
then in LSBRM for M modes (ie. for M developing
coefficients) the total M x M x N multiplications and
summations are performed. In our modification, with N
basis function samples and m developing coefficients, the
number of calculations is M x N x log, N. Then, taking
N, as the number of harmonics which mainly contribute
to the field value (i.e. their amplitudes are greater than a
certain small value), additional M x M x N1 operations
are performed. Altogether, the ratio of the number of cal-
culation is

:&_I_logzN

N M 22)

R,

The above ratio does not include the number of calcu-

lations required for solving eqns. 15. Since this number is

of the order M?3/3, the total ratio is

_ (M/3N) + (N,/N) + (log, N/M)
(M/3N) + 1

R, (23)
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It should be noted that, in all realistic problems, the
number of modes M is considerably smaller than the
number of samples (integral steps) N in the original
LSBRM.
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Fig.1  Gratings
a Sinusoidal

b Triangular

) /
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Fig. 2
(@) hfi = 0.375;d/i = 2.5
(b) /i = 0.1333; d/i = 1.3

Reflection coefficients for sinusoidal grating

Table 1: Energy balance

Diffraction from
sinusoidal grating

M,=15

Diffraction from
triangular grating

d/A=25 h/A=0.375

Angle, Energy summation Angle, Energy summation
degrees degrees

0 0.9907514 0 0.9995761
10 0.9923179 10 0.9994044
20 0.9910881 20 0.9997635
30 0.9908311 30 0.9993797
40 0.9969598 40 0.9998330
50 0.9950774 50 0.9996443
60 0.9950853 60 0.9995366
70 0.9988487 70 0.9993890
80 0.9991010 80 0.9999954
89 1.000253 89 0.9999812

Even if we assume that M = N, and that M is a large
number, the ratio given by eqn. 23 shows that the
reduction in computation time is still considerable.

The summation limit N, is defined by the basis func-
tion of faster convergence, and for our basis function it is
usually up to ten times smaller than N. As can be seen
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from Fig. 4, the significant values given by eqn. 14 are
located around the carrier numbers. The latter depend
on the basis functions indices, m and [/, and not on the
grating shape.

Rm
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b
Fig. 3  Reflection coefficients for triangular grating

(a) h/A = 0.375; /i = 2.5
(b) h/A =0.1333; d/i = 1.3

Table 2: Normalised eigenvalue k/(n/a) of H,, mode and nor-
malised bandwidth of the round-ridged waveguide for dif-
ferent cross-sectional parameters

h/d 0.9 0.8 0.7 0.6 0.5 04
Hio 0.969 0.92¢ 0.883 0.831 0774 0.721
Hyo—H;o 1.037 1.086 1.141 1.206 1.269 1.336

bj/a=03;a/d=2
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Fig. 4 Normalised value of | F,(n)F*(n)| against n for different harmo-
nics
O0C0 m=1;1=1
*%% m=1;1=15
xxx m=151=15

So, for N = 64, M = 31 and N, = 13, eqn. 22 gives the
ratio of performed calculations as 0.4. This means that
our modified version of the LSBRM is approximately 2.5
times faster than the original method. The reduction in
computation time comes from replacing the N-point
numerical integration by the summation of N, terms. For
the basis functions treated in this paper, the convergence
regarding N, is fast. It has been demonstrated [13], that,
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in some cases of practical interest, only one of the most
significant terms (N, = 1), may produce sufficiently accu-
rate results. However, for the most general form of basis
functions, the convergence regarding N, is to be con-
sidered in each case separately.

4 Eigenvalue problems

As a demonstration of the applicability of the suggested
method in eigenvalue problems, we shall consider two
complex cross-section waveguides (Fig. 5) carrying with
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Fig.5  Cross-section of round-ridged waveguide

H wave. The differential equation for the longitudinal
magnetic field component U = H,, is the same as eqn. 1,
and the boundary condition on the waveguide walls is:

O0H./on=0 (24)
so system eqns. 15 become
Ay 0 Ay %y
: : ‘=0 (25)
Ay 0 Amml o
Assuming H_ for the H,, and H,, modes to be:
2m—1)
a

M
H, o= Y a,sin nx cos k,y
m=1

2m —1
= exp " nd]
| a
M )
H.o= Y a,cos JZ—” x cos k,y

m=1

[ 2mnd
< exp —":”—} k2 + k2 = k2 (26)

then the boundary condition (eqn. 24) on the walls,
x = ta/2 and y = 0, 1s exactly satisfied.

The nontriviality condition for the eqns. 25 requires
that

det [|A,,ll =0 27

where A, = A,..(k). For different values of the relative
eigenvalue, k, = k/(n'a), we calculate det (4,,). The
unknown eigenvalues are those for which the determi-
nant is a minimum.

Better results were obtained by using eqn. 25 to give
the coefficients a,, with a; = 1, and e* from eqn. 10. By
altering the value of «,, we can find the minimum of e?
and thus the required eigenvalue.

In analogous manner we found the bandwidth of a
round-ridged waveguide (Fig. 5). The results (Table 3) are
almost identical to those obtained by the original method
[71.

Another example we studied was a variant of = ridged-
waveguide. The sharp ridge edge caused reduced accu-
racy when the same co-ordinate system (Fig. 6a) was
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Table 3: Normalised eigenvalue k/(n/a) of H,, mode of the
waveguide for different cross-sectional parameters

hid 01 02 03 04 05 06 07 08 09
k/(n/a) 045 058 062 071 079 0.85 091 0.94 099
byRef.12 049 058 064 071 079 084 090 0.94 0.99

ajd=2

used. Therefore the analysis was carried out in the system
shown in (Fig. 6b). This co-ordinate system was also
appropriate for our intended demonstration of the inclu-

Y

al2|_____ a

a b
Fig. 6  Cross-section of n-waveguide
sion of mixed boundary conditions in the suggested
variant.
When

D, y) = cos % cos \/[k2 - (%)2])1 (28)

the boundary conditions (eqn. 24) are exactly fulfilled on
the walls x =0, x =d and y = 0. The boundary condi-
tion (eqn. 24) is approximately fulfilled along the ridge,
while the field continuity conditions met along the rest of
the line y = a/2. So, we have

%éﬂ O<x<d—h
flm(x)z 5(;
— d—h<x<d (29)
Ox
0 O<x<d-—h
f"'(x)={¢m d—h<x<d

The square error is now

M-1 2 M-1 2
e’(x) = [ > m f.,.(X)] + g[ Zoam fu..(X)} (30)
m=0 m=
The minimisation procedure of e?, described in chapter 2
gives:
N/i2-1

A = sz/z[F (MExn) + gF () F,n)] @31

Otherwise, calculation of eigenvalues is identical to the
round-ridged waveguide. The results are shown in Table
3, where we give the eigenvalues from Reference [12] for
comparison. Again, we use N = 64 samples of basis func-
tions, the number of modes M = 11, and the weighting
factorg = 1.

This shows the results to be very close for all ridge
depths of practical interest.

5 Conclusion

The modification of the LSBRM was achieved using
FFT, instead of the usual integration procedure of the
original method. This variant was applied to the wave
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diffraction produced by sinusoidal and triangular grat-
ings, and also to eigenvalue problems of two types of
ridged waveguide. In all these cases, the accuracy was
very high, and computation was very fast. The shorter
computation time in the modified method is due to the
fact that, in FFT, we take only those harmonics that con-
tribute significantly to the basis function value. This
number can be much smaller than the number of integra-
tion steps in the original LSBRM.
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